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This paper is devoted to the concept of instability in dynamical systems with the 
main emphasis on orbital, Hadamard, and Reynolds instabilities. It demon- 
strates that the requirement about differentiability in dynamics in some cases is 
not consistent with the physical nature of motions, and may lead to unrealistic 
solutions. Special attention is paid to the fact that instability is not an invariant 
of motion: it depends upon frames of reference, the metric of configuration 
space, and classes of functions selected for mathematical models of physical 
phenomena. This leads to the possibility of elimination of certain types of 
instabilities (in particular, those which lead to chaos and turbulence) by 
enlarging the class of functions using the Reynolds-type transformation in 
combination with the stabilization principle: the additional terms (the so-called 
Reynolds stresses) are found from the conditions that they suppress the original 
instability. Based upon these ideas, a new approach to chaos and turbulence as 
well as a new mathematical formalism for nonlinear dynamics are discussed. 

1. I N T R O D U C T I O N  

In recent years an increasing amount of interest has been addressed to 
the fact that, in many different domains of science (physics, chemistry, 
biology, engineering), systems with a similar strange behavior are fre- 
quently encountered. These systems display irregular and unpredictable 
time evolution, and are called chaotic. But chaotic motions are not the only 
motions in dynamics which are unpredictable. Much earlier, about 100 
years ago, O. Reynolds studied, experimentally and theoretically, turbulent 
motions in fluids. Despite the many efforts, the problem of prediction of 
turbulent motions is still unsolved. Later another type of instability which 
is associated with a failure of hyperbolicity in distributed systems was 
discovered by J. Hadamard. In all these cases the postinstability behavior 
of the solutions to the original models is characterized by supersensitivity 
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to initial conditions, and for that reason, it cannot be predicted, since the 
initial conditions are never known exactly. In this paper we will discuss a 
possibility to develop a unified approach to prediction of postinstability 
behavior in dynamics. 

1.1. M a t h e m a t i c a l  Formulat ions  and D y n a m i c a l  lnvar iants  

Dynamics describes the motion of a system, i.e., the time evolution of 
its parameters. The time variable t can be discrete or continuous. In 
discrete-time dynamical systems, the rate of change of a parameter x is 
defined only for discrete values of t. These systems can be represented as 
the iteration of a function: 

xt+ l = v(xt, t), t = 0 , 1 , 2  . . . .  (1) 

i.e., as difference equations. 
In continuous-time dynamical systems the rate of change of x is 

defined for all values of t; such systems can be modeled by ordinary 
differential equations. 

dx 
- -  = x = v ( x , t )  (2 )  
dt 

or by partial differential equations: 

c~x t~2x 
--  v (x ,  x' ,  x " , . . ,  t), x" = - -  x" = ..... (3 )  

' c~ s ' cgS 2 ' �9 . . 

if the rate of change, in addition, depends upon distributions of x over 
space coordinates s. In equations (1)-(3), x represents the state of the 
dynamical system. 

Continuous-time dynamical system theory has adopted basic mathe- 
matical assumptions of the theory of differential equations, such as differ- 
entiability of the parameters (with respect to time and space) "as many 
times as necessary," the boundedness of the velocity gradients c~x/~x (the 
Lipschitz conditions), etc. Under these assumptions, the existence, unique- 
ness, and stability of solutions describing the behavior of dynamical 
systems has been studied. However, the dynamical systems cannot be 
identified with the mathematical models, i.e., with the differential equa- 
tions. Indeed, dynamical systems are characterized by scalars, vectors, or 
tensors which are invariant with respect to coordinate transformations. 
Hence, equation (2) or (3) models a dynamical system only if it preserves 
these invariants after any (smooth) coordinate transformation. For in- 
stance, any model of a mechanical system must be derivable from varia- 
tional principles which are expressed via the mechanical invariants (kinetic 
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and potential energy, dissipation functions, etc.). In other words, the 
difference between dynamical systems and the corresponding differential 
equations is similar to the difference between a matrix as an object of 
algebra and a second-rank tensor as an object of geometry: The same 
tensor can be modeled by different matrices, depend on choices of coordi- 
nates; however, all these matrices must have the same eigenvalues. Contin- 
uing this analogy, it can be expected that the parameters x in equations (2) 
and (3) can be decomposed (at least, in principle) into "invariant" and 
"noninvariant" components, in the same way in which a matrix A can be 
decomposed into invariant (diagonal ~) and coordinate-dependent (0, 0) ~ 
components: 

A = 0A0- '  (4) 

1.2. Ignorable Coordinates and Orbital Instability 

In mechanical systems, "noninvariant" components of x can be associ- 
ated with ignorable (or cyclic) coordinates which do not enter the Lagran- 
gian function explicitly, and therefore do not affect the energy of the 
system. For nonconservative systems, in addition to that, the generalized 
forces corresponding to these coordinates are zero. In terms of Lagrange 
equations, this property is expressed as the conservation of generalized 
ignorable impulses P (Gantmacher, 1970): 

d L  8L  
8q~ 0, Q~=0,  i.e., ~ = P ~ = c o n s t ,  a t = l , 2  . . . . .  m (5) 

unlike the equations for the position coordinates, which, in general, do not 
preserve the position impulses P: 

d cOL cOL 
= Qk, k = 1, 2 . . . . .  n (6)  

dt cOfI~ cOqk 

Here L is the Lagrangian, q~ and qk are ignorable and position coordinates, 
respectively, and Qk are nonpotential components of generalized forces. 

In order to illustrate the difference between position and ignorable 
coordinates, consider the following dynamical system: 

t = sin r, 0 = ~ = const (7) 

where r and 0 are polar coordinates. 
It has periodic attractors: 

nk 
r=-~--, k = 0 , 1  . . . . .  O = O o + ~ O t  (8) 

Returning to (7), one can easily identify r and 0 as position and ignorable 
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coordinates, respectively. Indeed, the Lagrangian and generalized forces for 
this dynamical system are 

and therefore 

1 2 "2  L = ~ (i + 19 ), Q, = I: cos r, Qo = 0 (9) 

d OL d OL 
dt OOr - Q" ~ O, -~ 00--~o = Qo = 0 (10) 

It is important to emphasize that the position coordinate r is stable at the 
attractors, while the ignorable coordinate | is at the boundary of stability: 
any small error in t9 will increase linearly (but not exponentially) in time. 

Indifference of the energy of a dynamical system to an unlimited 
growth of ignorable coordinates raises the following question: do there 
exist such states where all the position coordinates are stable, but some of 
ignorable coordinates are unstable? Numerical experiments give positive 
answers to this question. These states are associated with chaotic behavior. 
Unlike periodic attractors, here any small error in initial values of ignor- 
abie coordinates increases exponentially (but not linearly) with time, so 
that two motion trajectories which initially were indistinguishable (because 
of finite scale of observation) diverge exponentially, and therefore the 
behavior of the dynamical system becomes unpredictable. But is such a 
"multivaluedness" of trajectories consistent with the basic mathematical 
assumptions about motions of dynamical systems? This problem will be 
discussed in the next sections in connection with predictability in classical 
dynamics. 

1.3. Distributed Systems and Failure of Differentiability 

There are two types of distributed systems--hyperbolic and 
parabolic--which can model dynamical behaviors. (Elliptic equations are 
ill-posed for time evolution processes.) Distributed dynamical systems can 
exhibit more sophisticated behaviors, such as turbulence (whose relation to 
chaos is still disputed), Hadamard's instability (Zak, 1982a-c), which is 
associated with failure of hyperbolicity, and transition to ellipticity, forma- 
tion of cumulative effects (Zak, 1970, 1983), etc. 

Actually, all these phenomena are associated with spatial effects in 
distributed dynamical systems resulting from additional mathematical re- 
strictions requiring differentiability of dynamical parameters with respect to 
spatial coordinates. But are these restrictions always consistent with the 
physical nature of motions? The following example shows that such 
restrictions may lead to unrealistic solutions. 
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Consider an ideal filament stretched in the vertical direction, as shown 
in Fig. 1. Let us cut it at the middle point and observe the behavior of the 
upper and lower parts. The lower part will fold up in a "thick point," 
losing differentiability of its configuration. The upper part will preserve 
differentiability of its configuration in an open interval (which does not 
include the free end), but at the end small initial disturbances will accumu- 
late and become infinitely large (snap of a whip). Both of these effects are 
lost in the dynamical model based upon differentiability of the dynamical 
parameters (for the lower part of the filament) and upon the Lipschitz 
condition at the free end (for the upper part of the filament (Zak, 1970)). 

1.4. Open Problems 

As illustrated below, the evolution of ignorable coordinates may be 
fundamentally different from the evolution of nonignorable (or position) 
coordinates. For instance, the growth of position coordinates is limited by 
the boundedness of the system energy, and consequently their instability 
cannot persist: the system must find an alternative stable state. In contrast, 
the instability of ignorable coordinates (which is called an orbital instabil- 
ity) can persist all the time without having an alternative stable state. In 
particular, the indifference of the energy to changes of ignorable parame- 
ters is responsible for such phenomena as turbulence, chaos, failure of 
differentiability and uniqueness of solutions. In turn, the occurrence of 
these phenomena questions the basic mathematical assumptions about the 
class of functions in which the dynamical systems are described. 
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The existence of two different types of parameters in dynamical 
systems raises some other questions: can instability of ignorable coordi- 
nates develop independently of the behavior of the position coordinates? Is 
instability of ignorable coordinates an invariant of the frame of reference, 
or of the class of functions in which motions are studied? Can instability of 
ignorable coordinate be eliminated by change of motion representation? 

The answers to these questions, as well as new representations of chaos 
and turbulence, will be discussed in this paper. 

2. INSTABILITY IN DYNAMICS 

2.1. Basic Concepts 

Most dynamical processes are so complex that a universal theory 
which would capture all the details during all the time periods is unthink- 
able. That is why the art of mathematical modeling is to extract only the 
fundamental aspects of the process and to neglect its insignificant features, 
without losing the core of information. But "insignificant features" is not 
a simple concept. In many cases even vanishingly small forces can cause 
large changes in the dynamical system parameters, and such situations are 
intuitively associated with the concept of instability. Obviously the destabi- 
lizing forces cannot be considered as "insignificant features" and therefore 
they cannot be ignored. But since they may be humanly indistinguishable, 
in the very beginning, there is no way to incorporate them into the model. 
This simply means that the model is not adequate for quantitative descrip- 
tion of the corresponding dynamical process: it must be changed or 
modified. However, the instability delivers important qualitative informa- 
tion: it manifests the boundaries of applicability of the original model. 

We will distinguish short- and long-term instabilities. Short-term insta- 
bility occurs when the system has alternative stable states, For dissipative 
systems such states can be represented by static or periodic attractors. In 
the very beginning of the postinstability transition period, the unstable 
motion cannot be traced quantitatively, but it becomes more and more 
deterministic as it approaches the attractor. Hence, a short-term instability 
does not necessarily require a model modification. Usually this type of 
instability is associated with bounded deviation of position coordinates 
whose changes affect the energy of the system. Indeed, if the growth of a 
position coordinate persists, the energy of the system would become 
unbounded. 

The long-term instability occurs when the system does not have an 
alternative stable state. Such a type of instability can be associated only 
with ignorable coordinates since these coordinates do not affect the energy 
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of the system. The long-term instability will be the main subject of this 
paper. 

2.2. Orbital  Instability 

2.2.1. Ignorable Coordinates 

As mentioned in the Introduction [see (5)], the coordinate g~ is called 
ignorable if it does not enter the Lagrangian function L or nonconservative 
generalized forces Q: 

8L 
=0,  Q~ = 0  (11) 

t3q~ 

Therefore, 

~L 
Oq--~ = P, = const (12) 

i.e., the generalized ignorable impulse P, is constant. 
As follows from equation (12), there exist such states of dynamical 

systems (called stationary motions) that all the position coordinates retain 
a constant value while the ignorable coordinates vary in accordance with a 
linear law. For example, the regular precession of a heavy symmetric 
gyroscope is a stationary motion characterized by 

| = const, q) = const, ~ = const (13) 

where the angle of precession ~b and the angle of pure rotation ~b are 
ignorable coordinates, while the angle of nutation O- - the  angle formed by 
the axis of the gyroscope and the vertical--is a position coordinate. 

Obviously, stationary motions are not stable with respect to ignorable 
velocities: a small change in q~ at t = 0 yields, as time progresses, an 
arbitrarily large change in the ignorable coordinates themselves. However, 
since this change increases linearly (but not exponentially), the motion is 
still considered as predictable. In particular, the Lyapunov exponents for 
stationary motions are zero: 

a =  lim ( ~ ) l n  d(0)t 
d~0) ~0.t~ o~ ~ = 0 (14) 

However, in the case of nonstationary motion, the ignorable coordinate 
can exhibit more sophisticated behavior. In order to demonstrate this, let 
us consider the inertial motion of a particle M of unit mass on a smooth 
pseudosphere S having a constant negative curvature (Fig. 2): 

Go = const < 0 (15) 
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Remembering that trajectories of  inertial motions must be geodesics of S, 
we will compare two different trajectories assuming that initially they are 
parallel and that the distance between them Eo is very small. 

As shown in differential geometry, the distance between such geodesics 
will exponentially increase: 

E = Co exp[( - G o ) l / 2 t ] ,  Go < 0 (16) 

Hence, no matter how small the initial distance Eo, the current distance E 
tends to infinity. 

Le tus  assume now that the accuracy to which the initial conditions are 
known is characterized by L. This means that any two trajectories cannot 
be distinguished if the distance between them is less than l, i.e., if 

e < l (17) 

The period during which the inequality (17) holds has the order 

1 l 
At ~ - -  In (18) 

I-GoW 2 Eo 
However, for 

t >> At (19) 

these two trajectories diverge such that they can be distinguished and must 
be considered as two different trajectories. Moreover, the distance between 
them tends to infinity even if Eo is small (but not infinitesimal). That is why 
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the motion, once recorded, cannot be reproduced again (unless the initial 
conditions are known exactly), and consequently it attains stochastic 
features. The Lyapunov exponent for this motion is positive and constant: 

lim ( l ~ l n E ~ 1 7 6  ( - G o )  I/2 = const > 0 (20) 
t ~ oo,,d(O) ~ 0 k I /  (0 

Let us introduce a system of coordinates at the surface S: the coordinate q~ 
along the geodesic meridians and the coordinate q2 along the parallels. In 
differential geometry such a system is called semigeodesic. The square of 
the distance between adjacent point on the pseudosphere is 

where 

ds 2 = g,, dq2~ + 2g,2 dq, dq2 + g22dq 2 (21) 

while 

~L 
- - S O  if q 2 ~ 0  (25) 
c~ql 

Hence, ql and q2 play the roles of position and ignorable coordinates, 
respectively. 

Therefore, an inertial motion of a particle on a pseudosphere is stable 
with respect to the position coordinate ql, but it is unstable with respect to 
the ignorable coordinate. However, in contrast to the stationary motions 
considered above, here the instability is characterized by exponential 
growth of the ignorable coordinate, and that is why the motion becomes 
unpredictable. It can be shown that such a motion becomes stochastic 
(Arnold, 1988). 

Instability with respect to ignorable coordinates can be associated with 
orbital instability. Indeed, turning to the last example, one can represent 
the particle velocity v as the product 

v = Ivlz (26) 

1 
g,, = 1, g12 =0 ,  g22 = -~ -oexp[ -2 ( -G) l /2q l ]  (22) 

The Lagrangian for the inertial motion of the particle M on the pseudo- 
sphere is expressed via the coordinates and their temporal derivates as 

1 
L = g,jq,qj = 0 2 -- G00 exp [ -  2 ( - G )  ,/2q,]q~ (23) 

and, consequently, 

dL 
- -  = 0 ( 2 4 )  
C3q2 



2224 Zsk 

In the course of the instability, the velocity magnitude Iv[ and consequently 
the total energy remain unchanged, while all the changes affect only z, i.e., 
the direction of motion. In other words, orbital instability leads to redistri- 
bution of the total energy between the coordinates, and it is characterized 
by positive Lyapunov exponents. 

2.2.2. Orbital Instability o f  Inertial Motions 

The results described above were related to inertial motions of a 
particle on a smooth surface. However, they can be easily generalized to 
motions of any finite-degree-of-freedom mechanical system by using the 
concept of configuration space. Indeed, if the mechanical system has N 
generalized coordinate qg (i = 1, 2 . . . . .  N) and is characterized by the 
kinetic energy 

W = o~,j~l'il j (27) 

then the configuration space can be introduced as an N-dimensional space 
with the following metric tensor: 

gfj = a~j (28) 

while the motion of the system is represented by the motion of the 
unit-mass particle in this configuration space. 

In order to continue the analogy to the motion of the particle on a 
surface in actual space we will consider only two-dimensional subspaces of 
the N-dimensional configuration space, without loss of generality. Indeed, 
a motion which is unstable in any such subspace has to be qualified as 
unstable in the entire configuration space. 

Now the Gaussian curvature of a two-dimensional configuration sub- 

1 ~2a22 x 
20q I-~q ~ ] 

space (ql, q2) follows from the Gauss formula: 

1 ( 02al2 1 O2axl 
G -  at la22-a22 ~Oq-~q 2 2aq2dq 2 

(29) 

where the connection coefficients Ftsk are expressed via the Christoffel 
symbols: 

1 . laa~,  dakp Oask~ 
Ft~k = i atP/\ Oq----- ~ + (30) dq s Oq p ) 

while 

fn if a ~ ?  
a~a~v - ~ ~ (31) 

- a ~ = ( l  if a = ?  
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Thus, the Gaussian curvature of these subspaces depends only on the 
coefficients a~j, i.e., it is fully determined by the kinematical structure of the 
system [see equation (27)]. In case of inertial motions, the trajectories of 
the representative particle must be geodesics of the configuration space. 
Indeed, as follows from (26); 

dr dr 
d-t = ds ~ = 0 if b = 0 and lvt = l~l = const ~ 0 (32) 

where s is the arc coordinate along the particle trajectory: 

d~ = a~jdqi dq i (33) 

But then 

dr 
= 0 (34) 

which is the condition that the trajectory is geodesic. 
If the Gaussian curvature (29), which is uniquely defined by the 

parameters of the dynamical system a;j, is negative, 

G < 0 (35) 

then the trajectories of inertial motions of the system that originated at 
close, but different points of the configuration space diverge exponentially 
from each other, and the motion becomes unpredictable and stochastic. 
Some examples of orbital instability in inertial motions are discussed by 
Zak (1985b). 

2.2.3. Orbital Instability of Potential Motions 

Turning back to the motion of the particle M on a smooth pseudo- 
sphere (Fig. 2), let us depart from inertial motions and introduce a force F 
acting on this particle. For noninertial motions (F ~ 0) the trajectories of 
the particle will not be geodesics, while the rate of their deviation from 
geodesics is characterized by the geodesic curvature X- It is obvious that 
this curvature must depend on the forces F: 

X = X(F) (36) 

Synge (1926) showed that if the force F is potential, 

V = - V I I  (37) 

where FI is the potential energy, then the condition (35) is replaced by 

1 ( OzH _, c3n\ ~ j 
G o + 3 ~ 2 + - ~ \ O ~ q j  VO-~qk)nn <0;  i , j = l , 2  (38) 
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Here F~ are defined by equations (30), and n; are the contravariant 
components of the unit normal n to the trajectory. 

The geodesic curvature X in (38) can be expressed via the potential 
force F: 

F . n  VH "n 
X . . . . . .  (39) 

2W 2W 

As follows from (38) and (39), the condition (38) reduces to (35) if F = 0. 
Suppose, for example, that the elastic force 

F = -a2E, a2 = const (40) 

proportional to the normal deviation E from the geodesic trajectory is 
applied to the particle M moving on the smooth pseudosphere. If the initial 
velocity is directed along one of the meridians (which are all geodesics), the 
unperturbed motion will be inertial, and its trajectory will coincide with 
this meridian since there E = 0, and therefore F = 0. In order to verify the 
orbital stability of this motion, let us turn to the criterion (38). Since 

Z = 0  and OH F k = 0  (41) ~qk ---- 

for the unperturbed motion, one obtains the condition for orbital stability: 
~2 

Go + ~-~ > 0, i.e., ~2<-2WG, G < 0  (42) 

where 

1 
W = ~ mv~ (43) 

As in the case of inertial motions, the inequality 

o~ 2 < - 2 WGo (44) 

leads to unpredictable (stochastic) motions which are characterized by 

= .~G~ - ~ ]  = const > 0 (45) 

For pure inertial motions (~ = 0), equation (45) reduces to equation (15). 
After the discovery of chaotic attractors, the stochastic motions which 

are generated by the instability and are characterized by positive Lyapunov 
exponents are called chaotic. Hence, the inequalities (35) and (50) can be 
associated with criteria of chaos: if the left-hand part in (50) is bounded 
away from zero by a negative number - B  in all the configuration space 
where the motion can occur, then the motion will be chaotic, and its 
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positive Lyapunov exponent will be 

a > B 2 (46) 

Unfortunately, this criterion is too "strong" to be of practical significance: 
it is sufficient, but not necessary. Indeed, this criterion assumes that not 
only global, but also the local Lyapunov exponents are positive at any 
point of the configuration space. At the same time, for many chaotic 
motions, local Lyapunov exponents in certain domains of the configuration 
space are all negative or zero, although some of the global exponents are 
still positive. 

2.2.4. General  Case  

Following J. L. Synge, the results for the orbital instability of inertial 
and potential motions for a system of material points can be generalized to 
arbitrary motions. 

Since the motion of a system of material points in the configuration 
space with the metric (28) is represented by a unit-mass point, the momen- 
tum equation follows from Newton's second law: 

/F + F~,~(r = O r (47) 

where Q" is the force applied to the point. Let q r be the coordinates of the 
representative point M moving along an undisturbed natural trajectory C, 
and ( q ' +  qr) the coordinates of the corresponding (simultaneous) point 
M* of the disturbed natural trajectory C, while r/r is an infinitesimal 
disturbance vector. The condition for stability of the motion is that the 
magnitude of the disturbance vector should remain permanently small. 

Introducing a unit disturbance vector/~r codirectional with q', so that 

rl ~ =rt l t  ~, a,, , ,#"la" = 1 (48) 

where q is the disturbance vector magnitude, and substituting q~+ ry into 
equation (47), one can obtain an invariant differential equation with 
respect to the scalar r/(Synge, 1926): 

/ /+  Aq = 0 (49) 

where the scalar A is uniquely defined by the metric coefficients aii and the 
forces Q,., namely 

A = G,,,,,sllt"O"la'il ~ -  fi2 _ Qrd~, p ,  (50) 

in which G,~,,.~ is the curvature tensor of the configuration space expressed 
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in the covariant form 

Gms.I =--0F"~ 0F.~ I- (F.tFm~ v __ F.srml)~. v .v, a~avp = 6 p (51) 3q s dq t 

Here F~, are the Christoffel symbols defined by equation (30), and 

=/ 'OQr + F, n, '~a 
Q" \~3q' , , 4  ) . ,  r ; , . . ' 4 " ,  = (52) 

while the metric tensor of the configuration space is given by equation (27). 
Equation (49) leads to a sufficient condition for a dynamical system 

given in the form (47) to be exponentially unstable. If  the Riemannian 
curvature of the manifold of configurations corresponding to every two- 
space element x m x  " containing the direction of the given trajectory is 
bounded away from zero by a constant negative value, and Qmnxmx n is 
bounded away from zero by a constant positive value in all the domains of 
the configuration space where the motion can occur, then the motion will 
be exponentially unstable; since this instability persists, the motion will 
attain stochastic features (as in the case of the inertial or potential motion 
of a particle on a smooth pseudosphere), and therefore it will become 
chaotic. Actually the condition (38), which was formulated earlier without 
a proof, follows directly from equation (49). 

Obviously, the persistency of the instability in equation (49) can occur 
only due to a contribution of the exponential growth of the ignorable 
coordinates to the total magnitude of  the disturbance vector r/. For 
instance, in the case of inertial motion of the particle M on a smooth 
pseudosphere, the disturbance vector can be represented by the compo- 
nents E and v, which are codirectional and normal to the unperturbed 
(geodesic) trajectory. The component v corresponds to the ignorable coor- 
dinate, and its evolution is described by equation (49), which reduces to 

ii + 2WoGov  = 0 (53) 

The exponential instability of v when Go = const < 0 leads to chaos. At the 
same time, the position coordinate E is eliminated from equation (53) and 
it can be found from the energy conservation: 

" 7 " -  E = E0 So (54) 

where S0 and Eo are the initial conditions at t = 0 for the motion velocity 
along the trajectory and the position coordinate of  the disturbance vector, 
respectively. In spite of some limitations of the results described above (the 
conditions for chaos are sufficient, but not necessary; the forces Qr depend 
only upon coordinates, but not upon velocities), they nevertheless elucidate 
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the physical origin of orbital instability, chaos, and consequently, of 
unpredictability of motions in classical dynamics. 

2 . 3 .  H a d a m a r d ' s  I n s t a b i l i t y  

2.3.1. General Remarks 

The results presented in the previous section can be applied to dis- 
tributive systems after a discretization technique which reduces them to 
finite-dimensional systems. For instance, as noticed by Arnold (1988), an 
inviscid stationary flow with a smooth velocity field 

vx = A sin Z + C cos Y, vy = B sin X + A cos Z, 
(55) 

v : = C s i n Y + B c o s X  

has chaotic trajectories X(t), Y(t), Z(t) of fluid particles (Lagrangian turbu- 
lence) due to negative curvature of the configuration space which is 
obtained as a finite-dimensional approximation of a continuum. However, 
there are some special types of instability in distributed systems which can 
be lost in the course of the discretization, and we focus on them in this 
section. 

As noticed in the previous section, the long-term instability which may 
lead to chaos is associated with the orbital instability, i.e., with the 
instability of ignorable coordinates. However, in distributed systems de- 
scribed by partial differential equations, there is another possibility for 
long-term instability which is associated with the decrease of scale of 
motions, i.e., with the growth of spatial derivates of the system parameters. 
In mathematical terms this means a failure of differentiability of the 
solutions to the corresponding governing equations. However, an unlimited 
growth of spatial derivatives must be consistent with the boundedness of 
energy. Indeed, the stresses in continuous media depend not upon displace- 
ments or velocities, but upon their gradients, i.e., upon their space deriva- 
tives. Hence, we have to find such situations when an unlimited growth of 
these derivatives does not lead to unbounded stresses. 

Turning to the geometry of displacements and their gradients in 
continua, let us introduce the displacement vector 

u = r - r0 ( 5 6 )  

where ro and r are the radius vectors of the same particle before and after 
deformation, respectively. In elastic bodies, the stress tensor depends upon 
the displacement gradient Vu via the strain tensor e: 

~ = ~ [Vu + ( v u ) r +  u" (Vu)r] = [Vr" ( V r ) r -  ~] (57) 
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where ~ is the unit (the initial state) tensor, while the current state metric 
tensor is defined as 

g = 2c + ~ (58) 

The tensor gradient Vr in (57) can be decomposed as 

Vr = CB (59) 

where C is a symmetric tensor: 

C = + [ V r -  (Vr)] i/2 (60) 

and B is an orthogonal tensor: 

B= +[Vr'(Vr)r]l/2"(Vr)r=(B-I), d e t B =  1 (61) 

As follows from (60), the strain tensor is 

1 
E = ~ (c 2 -- ~) (62) 

and consequently the stress tensor depends only upon the symmetric part 
of the tensor gradient Vr, and does not depend upon its orthogonal 
component B, which corresponds to rigid rotations of elementary volumes. 
However, indirectly an unlimited growth of these rotations can lead to 
unbounded stresses in three-dimensional elastic bodies. Indeed as follows 
from the identity 

V x Vr = 0 (63) 

the components of the tensor gradient Vr must satisfy six additional 
constraints, which are called the compatibility equations. Loosely speaking, 
they follow from the requirement that after deformations, the continuum 
should not have any "holes" or "cracks." In geometrical terms, (62) 
represents the fact that after deformations, the actual space remains 
Euclidean, i.e., the curvature tensor is zero: 

R = 0 (64) 

However, six constraints imposed upon the tensor gradient Vr by (63) or 
(64) are also not independent. Indeed, according to another identity 

V" V x Vr ~- 0 (65) 

which holds even if 

V x Vr # 0 (66) 

and which is equivalent to three scalar equations, only three of the six 
constraints (63) are truly independent. In geometrical terms equation (65) 
can be associated with the Bianchi identities (Fluge, 1962). 
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Thus, nine components of the vector gradient Vr must satisfy three 
independent compatibility equations, and therefore if all six components of 
the stress tensor E are given, then the remaining three components of Vr 
and consequently all the rigid rotations will be uniquely defined. This 
means that in isotropic three-dimensional elastic bodies, an unlimited 
decrease of scale of motions would lead to unbounded stresses, which is 
physically impossible. 

Let us turn to one-dimensional continua (filaments). In this case, rigid 
rotations define the external geometry of the model (the rotations about 
the binormal to the filament correspond to the first curvature, and the 
rotations abcut the tangent to the filament correspond to the second 
curvature, or twist; Fig. 3), and they do not depend upon the elongations 
of the curve which define the stress. Indeed, let us introduce the filament 
equation in the form 

= r(~, t), 0_~ = 1 (67) r 

where @ plays the role of an Eulerian coordinate. Then the motions 
associated with changes of the internal geometry and therefore the stresses 
are described by the function 

~b = @(s, t) (68) 

where s is the Lagrangian coordinate of an individual particle. 

g 

12 
Fig. 3 

7 
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At the same time, the curvatures of  the filament configurations can be 
expressed as 

02r (dr/d0 x d2r/d02) �9 ddr/d03 
n3 = d 0  2 , n ,  = id2r/d021 (69)  

Consequently, both curvatures are independent of  the internal geometry 
characterized by (68), and in particular, upon the stress defined by the 
derivative dO~as. 

This means that unlimited growth of  the curvature may not cause 
stress at all, and therefore, instability in the form of  unlimited decrease of 
scale of  motions is possible (Fig. 1). 

The situation becomes more complicated in two-dimensional continua 
(films, membranes). Here the internal geometry is defined by two-dimen- 
sional versions of  equations (56)-(63),  while the external geometry is 
described by the coefficients of  the second fundamental form: 

02r 
bij = dO i dOj" n, i, j = 1, 2 (70) 

where 0 ~ are coordinates on the surface, and n is the unit normal to the 
surface. 

However, these coefficients are not  independent: they are coupled with 
the strains by three compatibility equations: 

bllb22 _ b122 = -12x l Z S v r F V  1- '6 ,-, __ I"~1 r2#zg~,t~ 

1 (~2gll d2g12 1 d2g22 

2 dO (2)~ + O0(')O0 (2) 2 O0 ~ 

dbu dba 
d~//(2) d~ (I) 

where 

r ,~b , , '  ' - r 2 b 2 2  + (r,22 - F i t )b ,2  

glt = 1 + 2 q l ,  gl2 = 2EI2, 

The two-dimensional Christoffel symbols are 

1 .lag,, Ogo dg~ r,;=~g Lo-~r~-t de(') dO('),l 
while 

(V, 6, ~Z,/~ = 1, 2) (71) 

(i = 1, 2) (72) 

g22 = g22 + 2E22 (73) 

(n, i,j = 1, 2) (74) 

IIg,, II = IIg'J][-' (75) 
Hence, in general, three coefficients b u are defined by the strains % from the 
three equations (71) and (72), and, consequently, change in b~j affects the 
strains %. 
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Nevertheless, there are situations when the unlimited growth of curva- 
ture may not affect the stress at all. In order to describe this case, recall 
that on a surface with negative or zero Gaussian curvature 

G = bllbz2-b12 
g l~ g22 - -  g 22 (76) 

there exists a family of  asymptotic lines where the second fundamental 
form is equal to zero: 

bll tan z q5 + 2bl2 tan ~b + b2: = 0 (77) 

while the angle ~b between an asymptotic line and the coordinate line ffl is 
found as 

b12 (b21-bl lb22)  I/2 
tan q~ - - - - -  + (b~ :~ O) (78) 

bll b~l 

Selecting the coordinate ~ as an asymptotic line, one obtains 

tan q~ = 0 (79) 

and, as follows from equations (77) and (78), 

b22 = 0 (80) 

Now it is obvious that along the asymptotic line the curvature b~ can be 
selected arbitrarily without affecting the parameters of the internal geome- 
try go, and consequently the stress. Indeed, since b22 = 0, b~ is eliminated 
from (71). In addition, as follows from (72), 

Obll Obl 2 
&b(2 ) &bo) = Fl2b,~ + ( F ~ -  Fl,)b,2 (81) 

Obl2 
o~,t~5 = r~%b,, + (r~2 - r h ) b , 2  (82) 

The derivative ObH/O0~ is not defined, i.e., that asymptotic line ~b~ coincides 
with the characteristic of  the partial differential equations (71) and (82). 

This means that the curvature b~L can be chosen arbitrarily along the 
asymptotic lines of  the surface without affecting any parameters of the film, 
including stresses. In other words, an unlimited growth of  the curvature b~ 
may be consistent with the unboundedness of  stresses and it can be 
associated with the formation of  wrinkles along the asymptotic lines. 

So far we have been concerned with elastic continua. Turning to fluids, 
one should recall that their stresses depend only upon the velocities, but 
not upon the displacements. That is why an unlimited growth of  any 
component of  the displacement vector (56) or of  the tensor gradient (59) is 
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consistent with the: unboundedness of stresses, and it can be associated with 
the Lagrangian turbulence. 

In terms of  velocities, the situation is different. In order to demon- 
strate that, recall that in a viscous fluid the stress tensor depends upon the 
velocity gradient Vv via the time derivative of the strain tensor (57). The 
velocity gradient Vv has the same type of structure as the vector gradient 
Vr: it can be decomposed into a symmetric tensor of the rate of strain 

1 
= ~ [Vv + (Vv) r ] (83) 

and an antisymmetric tensor 

1 
co = ~ [Vv - (Vv) r] (84) 

which is equivalent to the vector of  vortex 

1 1 
~o = ~ Curl v = ~ V x v (85) 

while 

Since 

V x Vv = 0 

Vv = ~ + a~ (86) 

and V ' V x V v = 0  (even if) V x V v ~ 0  (87) 

one comes to the same conclusion as in the case of the vector gradient Vr 
[see (63) and (65)]: nine components of  the tensors i and ~o are coupled by 
three compatibility equations. Hence, six components of  the rate of  strain 
tensor ~ uniquely define the velocity gradient, and for that reason an 
unlimited growth of the vortices in viscous fluids would lead to unlimited 
growth of stresses. 

The situation becomes different in inviscid fluids, where stress is 
defined only by a scalar-- the divergence V x v. But since any velocity field 
can be uniquely defined based upon two independent components of its 
gradient Vv; which are the divergence V ' v  and the vorticity V x v, one 
concludes that an unlimited growth of vorticity in an inviscid fluid may not 
lead to unbounded stresses. This conclusion can be loosely applied to 
motions of viscous fluids characterized by high Reynolds number when 
viscous stresses are ignorable in comparison to the inertia forces. In this 
case an "unlimited" growth of vortices can be associated with turbulence. 

i Thus, in this section we have analyzed a possibility "in principle" of 
an unlimited decrease of scale of  motions in continua from the viewpoint 
of  a consistency o f t h i s  type of  instability with the boundedness of  stresses 
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and energy. This means that if such an instability exists, it can be found 
only in one- or two-dimensional elastic models or in fluid motions with 
high Reynolds number. 

2.3.2. Failure of Hyperbolicity in Distributed Systems 
Mathematical models of continua are based on the assumption that 

the functions describing their states can be differentiated "as many times as 
necessary" at any point exclusive of some special surfaces of  discontinuities 
simulating shock waves or coinciding with the characteristics of the govern- 
ing equations. In other words, these functions must be at least piecewise 
differentiable. From the physical viewpoint this means that any point as a 
center of mass of an infinitesimal volume represents all the properties of 
this volume. Obviously, the assumption about the smoothness of the 
functions allows us to use the mathematical technique of differentiable 
equations. 

However, this artificial mathematical limitation follows neither from 
the principles of mechanics nor from the definition of a continuum. The 
price paid for such a mathematical convenience is instability (in the class of 
smooth functions) of the solutions to the corresponding governing equa- 
tions in some regions of the parameters. This instability is characterized by 
unlimited decrease of the scale of the motions, in the course of which the 
derivatives of the corresponding functions tend to infinity although the 
functions themselves remain finite. In other words, the solution tends to 
"go out" from the class of differentiable functions. 

Most of the instability phenomena leading to unlimited decreasing of 
the scale of continua motions are associated with the failure of hyperbolic- 
ity of the corresponding governing equations, i.e., with the appearance of 
imaginary characteristic speeds (Zak, 1982b,c). 

In order to illustrate this, we will start with the governing equations of 
motion of elastic bodies in the following form: 

02u~- ~ ~ I ~l-I 1 _  ~(~/Oxj) P--~-j=,~x~ +F~, i = 1 , 2 , 3  (88) 

where uj are the displacements, I-I is the potential energy of strains, p is the 
density, F~ are the external forces, and x~ are the material coordinates, 
posing the initial value problem 

u~ = { (01/2~ sin2~ 

= 0  

if Ix , l <-- Xo 
(89) 

if [xil>Xo, i = 1 , 2 , 3  

i = 1, 2, 3 (90) 
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where the parameter 2o can be made as large as necessary, i.e., 

20 --* oo (91) 

The region of the initial disturbance can be arbitrarily shrunk, i.e. 

Ixol-*0 (92) 

Consequently, the initial disturbances u; and their first derivatives du~/dx~ 
can be made as small as necessary. This means that for the corresponding 
infinitesimal period of time At0 the equations (88) can be linearized and the 
solution subject to the initial conditions (89) can be sought in the form 
uj = (xi, t), i.e., 

d2Ui (~2Uj ~Uj I 
Po ~ = ~ aij 2, while ~. --- 0 (93) 

j = l  ax~ ~xj ~t 

where 

d2H I (94) 
au = a(duil~xl )O(duj/dxl) a=,/ax,.a,j/axl = o 

Let us assume that one of the eigenvalues of the matrix a;j is negative: 

21 < 0 (95) 

Then the solution to the equation (93) will contain the term 

'o ,v ]  At sin 2oX (96) 
22o L \ p o /  

which tends t o  infinity if ;Lo -~ oo within an arbitrary short period of time 
Ato and within an infinitesimal volume around the point xi. Hence, one 
arrives at the following situation: 

lu; [  ~ oo (97) 

in spite of the fact that 

lu, I I,=o O (98) 
However, strictly speaking, because of utilization of the governing equation 
(88) in a linearized form, the conditions (98) must be weakened: 

lu, l§  if  lu, I ,=o-,0 (99) 

The formula (99) shows that the appearance of negative eigenvalues of the 
matrix (94), and consequently imaginary characteristic roots of the govern- 
ing equation (88) (failure of its hyperbolicity), leads to the violation of a 
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continuous dependence between the initial and transient disturbances dur- 
ing an arbitrarily short period of time and within an arbitrarily selected 
volume. This type of instability was first observed by J. Hadamard in 
connection with the ill-posedness of the Cauchy problem for the Laplace 
equation. Further results with applications to the instability of a string, 
film, and free surfaces of elastic bodies were reported by Zak (1982b,c). 

The result formulated above was obtained under specially selected 
initial conditions (89), but it can be generalized to include any initial 
conditions. Indeed, for equations (93) let the initial conditions be arbitrar- 
ily defined by 

lu, ~176 (100) 

and the corresponding solution is 

u, =f,(x, t) (101) 

By altering the initial conditions to 

u ( 0 ,  t) = u ~ + u ,  ~176 ( 1 0 2 )  

where u,. is defined in (89), we observe from the preceding argument by 
superposition that vanishingly small change in the initial conditions would 
lead to unboundedly large solutions. 

To obtain a geometrical interpretation of the above-described instabil- 
ity, let us turn to expression (97) of the solution and note that if the second 
derivatives d2ue/at2, tgui/dx ~ are of order 2o, then the first derivatives cgui/cgt, 
Oui/axi are of order 1, and ul are of order 1/~.0. Hence, the period of time 
Ato can be selected in such a way that the second derivatives will be as large 
as necessary, but the first derivatives and ug are still sufficiently small. Taking 
into account that the original governing equation (88) is quasilinear with 
respect to the second derivatives and therefore the linearization does not 
impose any restrictions on their values, one can conclude that the linearized 
equation (93) is valid for the solution during the above-mentioned period 
of time At0. Turning to the formula (97), one can now interpret the solution 
by the function having an infinitesimal amplitude and changing its signs with 
an infinite frequency (v = 2o--* oo). The first derivatives of this function 
~/dt, a~/x~ can be small and change their signs by finite jumps (with the same 
infinite frequency v), so that the second derivatives t32ui/~t 2, d2u~/ax2t at the 
points of such jumps are infinite. Thus, within an arbitrarily small volume 
there is located an arbitrarily large number of points at which the strains 
have jumps. From the mathematical point of view, the function describing 
such a field of displacements ui is considered as a continuous but nondiffer- 
entiable function. This function can be simulated, for instance, by a function 
with a multivalued derivative. 
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2.3.3. The Criteria of Hadamard's Instability 

Let us fix an arbitrary point M and an arbitrary direction xi at this 
point in an elastic body. According to the above-formulated result, the 
instability at the point M in the x direction results from the negative 
eigenvalues of  the matrix: 

au = I.~(,9,, Iax ,-jE,~uj t ~>: , ) j ,~,,/~x , . ~ , / , x  , : o 
Assuming that the unperturbed state at this point is characterized by the 
initial stresses 

T~s ~ 0, T~2s = 0, T~3/= 0, j = 1 , 2 , 3  (104) 

but zero strains 

( du~'~ = 0, i.e., E ~ = 0, 7o2 = 0, 7~ 3 = 0 (105) 
~x, ]o 

let us utilize the following for a variation of  the specific potential energy 
from the initial stresses defined by (104): 

dil~ = TI1 ~s + T12tSYl2 + TI3tSYl3 = ' " =  Tij&i/ (106) 

Taking into account that 

l[(au, V I  ,vl 
',, =~*Tkt, dx,) +1~7 +t~7 J 

Yl ,  = ~x~ + " "  (i = 1, 2, 3) 

i.e., 

. c~u~'~o c~u~ t~u: _du2 c~u3 _ t~u3 

dui (i = 1, 2, 3) 

Tli I~u ~/&r i = 0 

one obtains for aut/dxl-}0 

(107) 

~gT~ 
a~, -- ~ l  + &ll 

8Ti2 
a~-- ~, +77S-- r~ + - - -  

1 8T12 
2 dEl2 

(108) 

(109) 
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1 dTi3 + dT13 = TOll + _ _ _  (110) 
a33=T~ll ~ 2&13 

as2 = a21 = a13 = a31 = a23 = a32 = 0 ( 1 1 1 )  

where the stresses T 0 are related to the local Cartesian coordinates 
x~, x2, x3 at the point M. 

Now the eigenvalues of the matrix (106) can be written in the form 

h i = a i i  

i.e., 

dTl~ 
21 = T~ + - -  (112) 

del l  

d T i 2  ~ = r ~ + v - - =  ~ , ,  + - -  
0712 

dTs3 
~ 3 =  r ~  ~ - ~ ,  = ~ , +  - -  

Hence, the criteria of instability are 

T~II ~ - - - -  

T~II < - - -  

T~II < - - -  

1 dT12 
(113) 

2 dq2 

1 dT i3  
(114) 

2 dEi3 

dT,, 
(115) 

dell 
dTl2 

(116) 
8712 

dT13 
(117) 

dYl3 

Each inequality leads to the failure of differentiability of the corresponding 
component of strains: q~, t12, or q3, while the potential energy H(Eli) has 
a local maximum. 

Recall that all the above-formulated results are related to an arbitrary 
point Mo and arbitrary selected direction x~, with the unidirectional initial 
stress T~.  

In the general case when all the components of the initial stresses are 
nonzero, 

7 "o # 0 (118) 

one can decompose them into spherical and deviatoric parts, 

1 
T~ *, To* = Dev T~ (119) 
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where E is the unit tensor, and 

1 3 3 
To = - ~. T,:, ~ T* = 0 (120) 

3i=1 i=l 

Now equation (106) can be rewritten in the following form: 

~II = To&o + T*~ &,, + T*26q2 + ' " =  To&o + T*&ij  (121) 

where Co is the spherical part of the strain tensor: 

1 3 
% = ~ i=~ Eij (122) 

and instead of equations (108)-(110), one obtains 

all = T~ + aT?-----! 

a22 = T~l, + I aT*2 (123) 
2 &,2 

a33 = ~ ,  + 1 aT?3 
2 aq3 

Consequently, the sufficient conditions of the instability in some directions 
at the fixed point for an isotropic elastic material for which the derivatives 
OT~:/&i: do not depend on a selected direction x, are 

OT,, 
~ ,  < -- ~ (124) 

&tl 

1 aT,2 
~ ,  < - - ~  (125) 

2 &~2 

1 aT,3 
~P~lt < - - - ~  (126) 

2 &13 

where /~, is one, of  the principal deviatoric stresses. 
The instability emerges in any direction if these inequalities are valid 

for all the principle deviatoric stresses ~0: 

l aT,: 
< - - - ~  (i r  (127) 

2 OEij 
because usually 

~r. at. 
- -  > (i ~ j )  (128) 
Oeii Oeij 

For a Hook' s  material the criteria o f  the instability are expressed in terms 
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of Young's modulus E and the Poisson ratio v, 

dT~___~= E ( 1 - v )  dTij= E =2G (129) 
t~cii (v + 1)(1 - 2 v )  t~E~j v + 1 

if the initial stress tensor is spherical (Tij = p), where E, G, and g are the 
Young's and shear moduli and v is the Poisson ratio. 

2.3.4. Boundaries of Applicability of the Classical Models of 
Distributed Systems 

All the results discussed above were based on the formal analysis of 
mathematical models of elastic materials, and their practical usefulness has 
to be demonstrated. The most obvious and visualizable application of these 
results can be found in the area of one- and two-dimensional models such 
as strings, membranes, etc., whose states are defined not only by internal 
geometry(strains), but also by external geometry (shape). As shown in 
Section 2.3.1, in this model, unlimited decrease of the scale of motions may 
be consistent with the boundedness of stresses and energy. The problem of 
the shape instability there occurs as a result of any local compression and 
manifests itself in wrinkling, in the course of which the shape loses its 
smoothness. 

Examples. (a) For one-dimensional continua such as an ideally flex- 
ible inextensible string, two types of the characteristic speeds are obtained 
(Zak, 1968): 

21.2 = + (130) 

)~3,4 = "~ "~ - - -  (131) 

where T is the tension, p is the linear density, f~ is the first curvature of the 
string's shape, and Fn is the normal component of the external tracking 
force. These characteristic speeds correspond to discontinuities of the 
curvature and twist of the string, respectively (Fig. 4). 

Fig. 4 
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These conditions of the instability of the string's shape following from 
the failure of hyperbolicity are given in the form 

T < 0  (132) 

T <  F~ (133) 

The inequality (13 !) expresses the well-known fact that a compressed string 
is unstable (the loss of stability of the first curvature; Fig. 1). The shape of 
such a string cannot be described by differentiable functions, and, theoret- 
ically, that string can be rolled up in a point. The inequality (132) shows 
that even a stretched string can be unstable if subjected to the correspond- 
ing tracking force (the loss of the stability of the twist). 

These results are generalized to a one-dimensional, ideally flexible pipe 
within which an ideal fluid flows (Zak, 1982b,c): 

I 1 11/2 p I T PP 1)2 u2 
2[2=p,-~--~p~u +_ P +p, (p +P (134) 

p+pl u (p+pl)f~ (p+pl)2 u2 

where T is the tension referred to the entire pipe's cross section, p i is the 
linear density of the fluid, and u is the velocity of the fluid. 

Then, the conditions of the failure of hyperbolicity are given by 

T < (p ppI+ pj )  u 2 (135) 

F n ppJ 
- -  u 2 ( 1 3 6 )  T < ~ + ( p  +pt)2 

This means that a flow within the pipe destabilizes its shape. In order to 
illustrate the last results, let us consider a vertical, ideally flexible, inexten- 
sible pipe with a free lower end suspended in the gravity field. Assuming 
that the flow within this pipe has constant velocity u0, let us define the area 
of the instability (Fig. 5). The tension T referred to the entire pipe cross 
section is given by 

T = pg~(l - x) (137) 

where / is the length of the pipe, x is the coordinate along the length of the 
pipe, and ( is the ratio of the area of the cross section occupied by the 
pipe's walls relative to the entire cross-sectional area. Substituting (137) 
into (135), one obtains the unstable area of the pipe: 

u02 p 
l > x > _ l  g ( ( l + E ) '  r p~ (138) 
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Fig. 5 

Hence, for the ideal flexible pipe, the free end is always unstable. (Such a 
phenomenon is well known from experiments.) In the limit case uo--* 0, 
when the pipe can be considered as a string, the unstable area is concen- 
trated around the free end. As shown by Zak (1970, 1983), such an 
instability manifests itself in an accumulation of energy at the free end 
(snap of a whip). 

(b) For two-dimensional continua, such as membranes, films, and 
nets, as shown by Zak (1979), the characteristic speed corresponding to 
discontinuities of the shape (i.e., the coefficients of the second fundamental 
form) is given by 

21.2 = _ (139) 

where T, is the tension normal to the front of the wave of a discontinuity. 
Hence, the failure of hyperbolicity emerges in the region where at least 

one of the principal stresses is negative. Such a failure manifests itself in the 
formation of wrinkles. The wrinkles can be observed, for instance, in the 
course of shearing, twisting, or bending of a membrane (Fig. 6). If both of 
the principal stresses are negative, then even the lines of wrinkles lose their 
smoothness, and a membrane can be rolled up in a point. 
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Fig. 6 

Recall that in contrast to one-dimensional continua, where the shape 
parameters (curvature and twist) can be changed independently of the 
elongations, in two-dimensional continua there are some limitations im- 
posed on the changes of the shape in the form of the equations of 
compatibility with the changes of strains [the Gauss equations (71) and 
(72)]. As follows from equations (78)-(82), at the points of negative 
Gaussian curvature, there are two  directions of possible shape wave 
propagations (Fig. 7b). At the point of zero Gaussian curvature, there is 
only one such direction (Fig. 7c). Finally, at the points of positive Gaussian 
curvature, the shape discontinuities are impossible (Fig. 7d). 

Thus the instability of the shape defined in terms of the coefficients of 
the second fundamental form bij is possible only if a compression occurs in 

(,.,j 

Fig. 7 

(eJ (dJ 

6 ~,o 
G-, 
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the direction normal to the asymptotic line of the surface at the corre- 
sponding point. 

Slightly different criteria of the Hadamard instability can be obtained 
for liquid films considered as two-dimensional continua (Zak, 1985a). 

The Hadamard instability for three-dimension continua was studied by 
Zak (1982a-c). In this paper we will focus our attention on the instability 
of a surface separating an elastic body and ideal fluid (Fig. 8). 

As shown by Zak (1982b), the characteristic speed of waves transport- 
ing discontinuities of the surface shape is expressed as 

P 2  v +  - - T . . + - -  (140) 
P~ + P2 - Pl + P2 2 ( l + v )  (pl + p2) 2v2 

# 

in which Pl, E, v, and T.. characterize the density, Young's modulus, 
Poisson ratio, and the stress normal to the front of the propagating wave 
of the elastic body, and P2 and v characterize the density and the velocity 
of the fluid. 

Hence, the Hadamard instability occurs if: 

T.. < PiP2 v 2 E (141) 
(p, + p2) 2 2(1 + v) 

As a particular case of equation (140), one can arrive at the Hadamard 
instability of surface of a tangential jump in velocity in an inviscid fluid 
(Fig. 9) 

1 1 
,~ = ~ {(//2- Ul) ! [-(/d2-//1)2]1/2} = ~ (//2-- Ul)(l _+i) (142) 

This is a well-known result stating that tangential jumps of velocities in 

| 1  

p l ,  tl n . . . .  

I i i  m 

I i I I ilia 

Fig. 8 
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v I ' 

Fig. 9 

inviscid fluids are always unstable. (In fluid mechanics this phenomenon is 
called the Kelvin-Helmholtz instability.) 

2.4. Cumulative EffeCts 

2.4.1. Degenerating Hyperbolic Equations 

A cumulative effect can be introduced as a preinstability state which is 
associated with the change of type of governing equation from hyperbolic 
to parabolic when at least one of the characteristic speeds becomes zero. 
Actually this represents the boundary for the Hadamard instability, and 
depending on how the motion approaches this boundary, it may remain 
stable or unstable. The simplest example of this type of situation is the 
governing equation for a vertical, ideally flexible, inextensible string with a 
free lower end suspended in a gravity field (Fig. 8). Projecting this equation 
into the horizontal direction, one arrives at the governing equations for 
small transverse motion of the string: 

t92x T a2x 

with the characteristic speeds 

= 0  (143) 

= _+ ( 1 , ~ )  
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Since the tension of the string T vanishes at the free end, 

T = 0 at S = l (145) 

where l is the length of the string, the characteristic speeds (144) vanish, 
too, at S = l, and therefore equation (143) degenerate into parabolic type 
at the very end of the string. 

As a second example, consider a one-dimensional model of the shear 
wave propagation in a soil column of height H: 

02u 0 ( O u )  
P ~ - = ~ x  G~xx (146) 

where p is the density, u is the horizontal displacement, G is the shear 
modules, t is time, and x is the vertical coordinate with the origin at the 
surface. 

Ignoring the small shear stresses at the surface, one can take the shear 
modulus in the following form: 

G = 0.5pgx (147) 

Since 

G = 0  at x = 0  (148) 

equation (146) degenerates into parabolic type at the soil surface. 
For the sake of concreteness, we will investigate the solution to 

equation (146) subject to the initial and boundary conditions 

Ou Ou 
u(x, O) = tO(x), -~x (x, O) = ~k(x), U(H, t) = ~(t), ffxx (0, t) = 0 

(149) 

Thus, it is assumed that the soil column is fixed at x = H and there is no 
shear stress at the surface, i.e., at x = 0. 

One should notice that for simplicity in this model all the damping and 
creep effects are ignored. 

2.4.2. Uniqueness of  the Solution 

Let us assume that there exist two solutions of the problem under 
consideration, u'(x, t) and u"(x, t), and let us examine the difference 

u*(x, t) = u'(x, t) --u"(x, t) (150) 

The function u*(x, t) satisfies equation (146) with additional homogeneous 
conditions: 

0x j (lSl) 
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u*(x ,  0) = 0, - -  (x, 0) = 0 (152)  
Ot 

du* 
u*(H,t)=O, - - ( 0 ,  t) = 0  (153) 

dx 

For the total energy, one gets 

E(t)=E(O)=~ G + P ~ t - )  ; ,=0  d x = 0  (154) 

If the solution is sought in the open interval 

0 < x  < H (155) 

which does not include the surface point x = 0, then the uniqueness of the 
solution is obvious. 

However, this proof cannot be applied to the closed interval 

0 < x < H (156) 

which includes the surface point x = 0. Indeed, in this case, according to 
equation (148), 

G = 0  at x = 0  (157) 

and any arbitrarily selected derivative Ou*/Ox at x = 0  will satisfy the 
equality in (154). 

Thus, for the closed interval (156), the uniqueness of the solution can 
be guaranteed only in the class of functions having continuous derivative 
Ou*/Ox, otherwise an infinite number of different solutions can be offered to 
satisfy equations (146) with the conditions (145) and (149) in the interval 
(156). As will be shown in the following, the artificial mathematical 
restriction about the continuity of the derivative ~u*/~x excludes such 
important physical phenomena as cumulative effects. 

From the mathematical point of view, the singUlarity at the point 
x = 0 is associated with the fact that the original equation is hyperbolic in 
the open interval (155), but degenerates into a parabolic equation at the 
point x = 0. The physical meaning of this singularity will be discussed in 
the following section. 

2.4.3. Stability of the Solution 

Starting with the conditions (148), let us assume that 

>0 for O<x* <x <x* <H 
q~(x) =0 for x < x l  and x > x 2  

(158)  
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q/(x)10 ~ x ~ n = 0 (159) 

~(t) =0 ,  t > 0  (160) 

i.e., we consider an initial disturbance in a local interval Ix*, x*] contained 
within the interval [0, HI. 

From the differential equation of  the characteristics, one finds the 
equations of the characteristics passing through x~ and x2: 

t" = (161) 
, [G(c ) /~o]  ~/2 2 [ G ( O / ~ ]  ~i2 

O < x ~ < x 2 < H  

Here xl and x2 are the coordinates of the leading and trailing fronts of the 
discontinuity wave of derivatives OZu/Ot z and O2u/Ox 2, where 

x ~ = x * ,  x 2 = x *  at t = 0  (162) 

A singular solution coincident for both characteristics holds for 

because 

X 1 ~ X 2 = 0  

dxl x,= =--dx21 = 0  (163) 
dt o dt -~ 2 = o 

Two cases may arise: (A) The improper integral 

[G(rl)/p]j/2 < ~ for x--*0 (164) 

i.e., converges, which then means that coincidence of the characteristics 
occurs for finite t = t*. Then 

10~tt t ~ ~ for t ~  t * <  co (165) 

From the mathematical viewpoint this instability predicts an accumulation 
of the shear strain energy at the soil surface x = 0. At the same time, it 
illustrates the ambiguity in the solution which has been remarked in the 
investigation of equation (15). 

(B) If  the improper integral (164) diverges, then the characteristics 
(161) coincide at t * ~  ~ and the accumulation effect does not occur. 

For the particular case of  soil where the shear modulus is given in the 
form (t47) the integral (164) converges and the time t* defining the 
moment of  the formation of  the shear strain energy accumulation at the 
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soil surface is 
_[2X* "~1/2 

In the general case when the shear modulus is a more complicated function 
of  the elevation the cumulative effect occurs if 

G >s x2+~2 

where c~, c2 are arbitrarily small positive constants, because then the 
integral (164) converges. 

2.4.4. Snap of a Whip 

The results presented above can be applied to equation (163) describ- 
ing transverse oscillations of  a vertical, ideally flexible, inextensible string 
with a free lower end suspended in a gravity field. 

The tension of  the string due to gravity is given by 

T = y(l - x) (166) 

where 7 and l are the specific weight and length of  the string, respectively. 
Referring to the formula (144), one concludes that the characteristic 

speed of  transverse displacements tends to zero at the free end: 

Tlx = ~ = 0, ~3.4 ---' 0 if x --* l (167) 

In other words, for small transverse displacements of  the string, the 
governing equation is of  hyperbolic type only in the open interval, exclud- 
ing the end: 

0 < x < 1 (168) 

As shown in the previous section, in this open interval there exists a unique 
stable solution. However, in the closed interval, including the end 

0 ~ x < l (169) 

the solution is not unique and there are unstable solutions if the improper 
integral 

~o -~ de (170) 
[T(r 

converges for x--* 1. 
This result has a very clear physical interpretation: Suppose that an 

isolated transverse wave of  small amplitude was generated at the point of  
suspension (Fig. lb). The speed of  propagation of  the leading front of  the 
transverse wave will be smaller than the speed of  the trailing front because 
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the tension decreases from the point of suspension to the free end [see 
equations (144) and (166)]. Hence, the length of the above wave will be 
decreasing and in some cases [see (170)] will tend to zero. Then according 
to the law of conservation of energy, the specific kinetic energy per unit of 
length will tend to infinity, producing a snap (snap of a whip). 

It can be easily verified by substituting (166) in (170) that for the 
string in the gravity field the integral (170) converges, i.e., instability in the 
form of snap occurs. 

The same type of instability as a result of accumulation of energy near 
the boundary of the failure of hyperbolicity can exist in two- and three- 
dimensional models in the domains where the inequalities (116)-(118) are 
close enough to the corresponding equalities (Zak, 1982c). 

14.5. Failure of Lipschitz Conditions 

The cumulative effects are accompanied by a very interesting mathe- 
matical phenomenon: failure of Lipschitz conditions for the differential 
equations of characteristics: 

ds 
dss = ~ = 2(s) (171) 

Indeed, if the characteristic speed follows from equation (143) or equation 
(146), i.e., 

2 = + or 2 = +_~-~) , respectively (172) 

then 

if 

~ss = 2-2-~'s ~ 0  at S-~So (173) 

t&2 2 t 
~ - i > 0  at S~So 

As follows from equations (147) and (166), 

(~22 ~S 2 = 0.5g > 0 and = g > 0, respectively (174) 

Hence, the loss of the uniqueness of the solution to equations (143) and 
(146) can be formally associated with the failure of the Lipschitz condition 
at the point where the characteristics coincide. 

In general, failure of the Lipschitz conditions in dynamics was ana- 
lyzed by Zak (1988, 1992, 1993a,b). 
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2.5. Comments on Other Types of Instability in Dynamics 

As follows from the previous section, the Hadamard instability occurs 
in idealized models such as elastic bodies or ideal fluids where the energy 
dissipation can be ignored. The main property of this type of instability is 
that the solution becomes unbounded during a finite time interval (t < oo). 
However, there are many other types of instability (especially in fluid 
dynamics) which also lead to unlimited decrease of the scale of motion, 
although they are not so "strong" as the Hadamard instability: the solution 
becomes unbounded only at t ~ oo. Since all of these Lyapunov-type 
instabilities are well represented in the literature, we will give here only a 
brief description of them. 

Thermal instability arises when a fluid is heated from below. When the 
temperature difference across the fluid layer is great enough, the stability 
effects of viscosity and thermal conductivity are overcome by the destabiliz- 
ing buoyancy, and the instability occurs in the form of a thermal convec- 
tion. 

Centrifieial instability occurs in a fluid owing to the dynamical effects 
of rotation or of streamline curvature. For instance, as shown by Rayleigh, 
an inviscid flow between two rotating coaxial cylinders is unstable if the 
angular momentum [r2fl[ decreases anywhere inside the interval rl < r < r2, 
where f~ is the angular velocity of rotation of the fluid and r~ and r 2 are the 
radii of the coaxial cylinders. 

It can be demonstrated that in general, centrificial instability arises 
from adverse distributions of angular momentum. 

Rayleigh-Taylor instability derives from the character of the equi- 
librium of an incompressible heavy fluid of variable density. For instance, 
it can be shown that in the case of a variable density of exponential 
distribution 

p = p o e  az, fl = const (175) 

where z is the vertical coordinate, the equilibrium is unstable if 

fl > 0 (176) 

i.e., if the heavier layers are above the lighter layers. 
Reynolds instability results from an imbalance between the inertial and 

viscous forces. It occurs when the Reynolds number R exceeds certain 
critical values which depend upon the type of flow and its boundary 
conditions. For a particular case of inviscid shear flow (R ~ oo) with 
parallel streamlines, Rayleigh showed that a necessary condition for insta- 
bility is that the basic velocity profile should have an inflection point. 
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3. STABILIZATION PRINCIPLE 

3.1. Instability as Inconsistency Between Models  and Reality 

3.1. I. General Remarks 

It has been demonstrated in the previous section that there are some 
domains of  dynamical parameters where the motion cannot be predicted 
because of instability of the solutions to the corresponding governing 
equations. How can this be interpreted? Does it mean that Newton's laws 
are not adequate? Or is there something wrong with our mathematical 
models? In order to answer these questions, we will discuss some general 
aspects of  the concept of instability, and, in particular, the degree to which 
it is an invariant of motion. We will demonstrate that instability is an 
attribute of a mathematical model rather than a physical phenomenon, that 
it depends upon the frame of reference, the class of functions in which the 
motion is described, and the way in which the distances between the basic 
and perturbed solutions is defined. 

3.1.2. Instability Dependence upon Metrics of Configuration Space 

Let us turn to orbital instability discussed in Section 2.2. The metric of  
configuration space where the finite-degree-of-freedom dynamical system 
with N generalized coordinates qi (i = 1, 2 . . . . .  N) is represented by a 
unit-mass particle was defined by equations (27) and (28). Now there are 
at least two possible ways to define the distance between the basic and 
disturbed trajectories. Following Synge (1926), we will consider the dis- 
tance in both kinematic and kinematicostatic senses. In the first case the 
corresponding points on the trajectories are those for which time t has the 
same value. In the second case the correspondence between points on the 
basic trajectory C and a disturbed trajectory C* is established by the 
condition that P (a point on C) should be the foot of the geodesic 
perpendicular let fall from P* (a point on C*) on C, i.e., here every point 
of  the disturbed curve is adjacent to the undisturbed curve (regardless of 
the position of  the moving particle at the instant t). As shown by Synge, 
both definitions of stability are invariant with respect to coordinate trans- 
formations, and in both cases the stability implies that the corresponding 
distance between the curves C and C* remains permanently small. 

It is obvious that stability in the kinematic sense implies stability in the 
kinematicostatic sense, but the converse is not true. Indeed, consider the 
motion of  a particle of unit mass on a plane under the influence of  a force 
system derivable from a potential: 

I 
FI = - x  + ~ y -  (177) 
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Writing down the equations of motion and solving them we get 

1 t2 x = ~  + A t + B  

y = c sin(t + ~) 

where A, B, C, and D are constants of integration. 

(178) 

(179) 

The motion is clearly unstable in the kinematic sense. However, from the 
viewpoint of stability in the kinematicostatie sense, the distance between 
corresponding points is 

PP* = y = C sin(t + D) (182) 

This remains permanently small if C is small. Hence, there is stability in the 
kinematicostatic sense. 

Thus, the same motion can be stable in one sense and unstable in 
another, depending upon the way in which the distance between the 
trajectories is defined. 

It should be noticed that in both cases, the metric of configuration 
space was the same [see equations (27) and (28)]. However, as shown by 
Synge (1926), for conservative systems, one can introduce a configuration 
space with another metric: 

g,,, = (g  - H)~,~, (183) 

where ~,,, are expressed by equation (27), and E is the total energy. 
The system of motion trajectories here consists of all the geodesics of 

the manifold. The correspondence between points on the trajectories is 
fixed by the condition that the arc O ' P *  should be equal to the arc OP, 
where O and O* are arbitrarily selected origins on the basic trajectory and 
any disturbed one, respectively. 

As shown by Synge, the problem of stability here (which is called 
stability in the action sense) is that of the convergence of geodesics in 
Riemannian space. If two geodesics pass through adjacent points in nearly 
parallel directions, the distance between points on the geodesics equidistant 
from the respective initial points is either permanently small or not. If not, 
there is instability. It appears that stability in the action sense may not be 
equivalent to stability in the kinematicostatic sense for distances which 
change the total energy E. 

Let the undisturbed motion be 

1 t2 x = ~  + t  (180) 

y = O  (181) 
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Turning to example (177), let us take the initial point O at the origin 
of coordinates and the initial point O* on the y axis. Then the disturbance 
being infinitesimal, the (action) distance between corresponding points is 

P*  = (E  - Fl)l/2y = 2-1/z( t  + 1)C sin(t + D) (184) 

Hence, the motion is unstable in the action sense. 

3.1.3. Instabili ty Dependence  upon the Frame o f  Reference  

Dynamical instability depends not only upon the metric in which the 
distances between trajectories are defined, but also upon the frame of 
reference in which the motion is described. Such a dependence was already 
noticed above [see equations (55)]. In this section we will introduce and 
discuss an example which illustrates the dependence of criteria of hydrody- 
namic stability and the onset of turbulence upon the frame of reference. 

The linear theory of hydrodynamic stability is based upon the Eulerian 
representation of fluid motions in which the frame of reference is chosen a 
priori. Strictly speaking, such a representation provides criteria of stability 
for the velocity field rather than the fluid motion. The difference between 
these two types of stability was illustrated by Arnold (1988), who intro- 
duced flows with stable velocity fields and unstable trajectories (Lagrangian 
turbulence). If the classical (Eulerian) turbulence is associated with the 
instability of streamlines, then it is reasonable to study this instability in a 
streamline frame of reference in which streamlines form a family of initially 
unknown Eulerian coordinates, while the remaining two Lagrangian coor- 
dinates are found from the compatibility conditions. Such a frame of 
reference is completely defined by the motion, and therefore it contains a 
minimum of arbitrarily chosen parameters. 

First of all, we will show that criteria of stability in this frame of 
reference do not necessarily coincide with the classical criteria which are 
derived from the Orr-Sommerfeld equation. For this purpose, we will 
introduce a small disturbance velocity field for incompressible plane flow in 
Cartesian coordinates x, y: 

I(~ = (p ' (y )e  a~~ I~,), V~. = - io t (a(y)e  i~x ~t), 0~, fl = const (185) 

where the prime denotes differentiation. 
The angle 0 between streamlines and the x direction is 

i ~  ei(a x Bt) (186) 

in which ~(y) is the velocity profile of the basic flow. The orthogonal 
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streamline coordinates ~, ~ are found from the system 

COx Ox Hz sin 0, COY = H~ sin 0, COY = n ,  c o s  0,  co-  = - co-  co-7 = c o s  0 

(187) 

where H~ and //2 are the Lain6 coefficients defined by the compatibility 
conditions (CO2x/CO~ 0( = CO2x/CO~ CO~, etc.) 

and 

(a0 co0 ) aa~ coil, 
~xx + ~ tan 0 H, = tan 0 ' COy (188) 

grange equation 

d COw COw 10p cow 1 COp 

dt COl t3~ p CO~' CO~ p CO( 

in which the kinetic energy is 

and the velocity is 

| 2 2 W=-~ H , ~  

V =  Vl = H l ~ ,  Vz=Hz~  = 0  

while p and p are pressure and density, respectively. 

(193) 

(194) 

( coo coo ) 0COg2 CO/42 (189) 
-~yy + ~x tan 0 /42 = tan 0y COx 

It follows from equations (186)-(189) that the coordinate transformation 

x = x(~, (, t), y = y(~, (, t) (190) 

in general will depend on time. Hence, for the stream function one obtains 

~k = dp(y)e i (~-  ~o = ~b[y(~, ~, t]e i[~'(r ~" ')- ~'! (191) 

i.e., 
COq/I x,y= to.s, 
COt # ~-~t ]r162 = to.st (192) 

In other words, the stability criteria in frames x , y  and ~, ~ are not 
necessarily the same. 

This preliminary conclusion provides motivation to analyze criteria of 
hydrodynamic stability in streamline coordinates, 

Confining our investigation to a plane incompressible inviscid flow, we 
derive the momentum equations in streamline coordinates from the La- 
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and 

The momentum equations read 

OV+ v(OH~ 8V)  10p (195) 
H, Ot \ Ot + - ~  = p 04 

V 2 OH1 1 8p 
(196) 

H1//2 04 p 0~ 

The continuity equation follows from the condition 

0 
div V=O, i.e., ~ (VH2) = 0  (197) 

Equations (187)-(189) are completed by the compatibility (Lain6) equa- 
tion 

07 < (198) 

Linearizing these equations with respect to an unperturbed shear flow. 

~'= ~'(y) (199) 

and taking into account that for this flow the streamline coordinates 
coincide with the Cartesian coordinates 

= x, ~ = Y, fl. =/~2 = 1 (200) 

one obtains after eliminating the pressure 

029 02 I"~l 02ff 02/-'tl 
Ot 0~ 0t 8~ + P(O ~ - ~  + 172(0 ~ = 0 (201) 

0-~" + I7(0 ~ -  = 0 (202) 

02fl2 02fl, 
0~ 2 ~ - - ~  = 0 (203) 

where 17, ill ,  and /-7 2 are small perturbations of V, H1, and H2, respec- 
tively. 

If the solution for V is assumed to be of the form 

17 = fl'(Oq~'(Oe ~(~r /m, ~,/3 = const (204) 

then it follows from equations (202) and (203) that 

/72 = - ~b'(Oe/~=r - t~,), _ 8ffI___2 = _ ~ 2dp(Oe..r _ ~,) (205) ar 



Substituting the values (204) and (205) into equation (201), one arrives at 
the governing equation for ~b(O: 

cf"(O t~ $" - ~b' - ~2~b = 0, c = - (206) 
f'(O[ f'(O - c] 

which is different from the Orr-  Sommerfeld equation. 
If the basic flow ~/(y) is bounded by rigid walls 

Y = Yi, Y = Y2 (207) 

then the streamlines at q = yl and ( =Y2 must coincide with these walls, 
i.e., 

Or 1 ~ H  1 
- - n = 0  at Y=Yl  and Y=Y2 (208) 

in which ~ and n are the unit tangent and the unit normal vectors to the 
streamlines, respectively. 

Hence 

OH~ 
- - = 0  at y = y ~  and y = y 2  (209) a( 

and therefore, with references to equations (205), 

q~(~, = y~) = 0, ~b((z = Y2) = 0 (210) 

These equations express the boundary conditions for equations (206). 
In order to show that the stability criteria in streamline coordinates are 

different from those given by the Orr-Sommerfeld equations, let us select 
a special velocity profile ~"(y) such that the coefficient of  q~' in equation 
(206) reduces to a constant. Obviously, such a profile must satisfy the 
first-order differential equation 

~(~/_  c ~  -- y = const, I m y = O  (211) 

and consequently 

~ =  c (212) 
I - e tTy 

while equations (206) for this profile reduces to 

~ " -  c ~ r  ~2~ = 0 

Its general solution is 

(213) 

~b = CI exp(21y) + C2 exp(22y) (214) 
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where 

~,,2 = y + 

2259 

X~l/2 
+ ~2) (215) 

Substitution of the boundary conditions (210) into equation (214) leads to 
a system of homogeneous equations: 

C, exp(21yl) + C2 exp(22yl) = 0 
(216) 

C~ exp(21y2) + C2 exp(22y2) = 0 

and for a nontrivial solution 

d ./'exp(21yl) exp(22yl)'~ 
et~exp(2,y2) exp(22y2)] 

=exp(2myl + 22Y2) -- exp(21y2 + 22yl) = 0 (217) 

i.e., 2~ = 22; or, with reference to equation (215), 

c = + i 2 a / y  = +_Coi (218) 

Since a and ? are real, c is imaginary, and therefore solutions (205) are 
unstable for any y~ and Y2. 

Now we will show that the Orr-Sommerfeld equation predicts stabil- 
ity for the same profile. Indeed, substituting c from equation (218) into 
equation (217) and separating the real part of the velocity profile, one 
obtains 

Re 1 ~ = +cotan(2~y) (219) 

This profile has only one inflection point [at y = ~z/(4a)]. Consequently, 
according to the point-of-inflection criterion proved by Tollmien, any 
profile of the form (219) which does include the inflection point, i.e., 

7~ 
0 < y l  < y  ~ y2 < ~-~ (220) 

is stable. 
It is important to emphasize that these two different results regarding 

the same velocity profile are not mutually exclusive: the first is related to 
the stability of the fluid motion referred to streamline coordinates, while 
the second is related to the stability of the velocity field. But which of these 
approaches is actually related to the onset of turbulence? The dynamics of 
fluid motion, and in particular the stability of streamlines, are directly 
related to the onset of turbulence inasmuch as the stability of particle 
trajectories is directly related to the onset of Lagrangian turbulence. At the 
same time, the stability of velocity fields is indirectly related to the onset of 



2260 z~t 

turbulence. That is why the linearized version of the classical theory of 
stability cannot explain the instability of plane Couette flows. In this 
connection it is worth noting that by an appropriate selection of ~, Yl, and 
Y2 in equations (219) and (220), the velocity profile (219) can be made as 
close as necessary to a straight line, thereby predicting the instability of any 
flow which is arbitrarily close to the Couette flow. 

3.1.4. Instability Dependence upon the Class of  Functions 

The properties of solutions to differential equations such as existence, 
uniqueness, and stability have a mathematical meaning only if they are 
referred to a certain class of functions. For instance, as shown above in 
equations (143) and (146), we have a unique stable solution in an open 
interval (155) in the class of bounded functions, while in a closed interval 
(156), the uniqueness and stability are not guaranteed. Most of the results 
concerning the properties of solutions to differential equations require 
differentiability (up to a certain order) of the functions describing the 
solutions. However, the mathematical restrictions imposed upon the class 
of functions which guarantee the existence of a unique and stable solution 
do not necessarily lead to the best representation of the corresponding 
physical phenomenon. Indeed, turning again to equations (143) and (145), 
one notices that the unique and stable solution (155) does not describe 
accumulation effect (a snap of a whip) which is well pronounced in 
experiments. At the same time, an unstable solution in a closed interval 
(156) gives a qualitative description of this effect. Hence, pure mathemati- 
cal restrictions imposed upon the solutions are not always consistent with 
the physical nature of motions. In this context, the long-term instability in 
classical dynamics discussed in Section 2 can be interpreted as a dis- 
crepancy between these mathematical restrictions and physical reality. This 
means that unpredictability in classical dynamics is the price paid for 
mathematical "convenience" in dealing with dynamical models. Therefore, 
the concept of unpredictability in dynamics should be put as unpredictabil- 
ity in a selected class of functions, or in a selected metric of configuration 
space, or in a selected frame of reference. 

Now the following problem can be posed. How does one select an 
appropriate mathematical representation of a physical phenomenon? The 
answer to this question will be discussed below. 

3.2. Dynamics in Rapidly Oscillating Frame of Reference 

As shown in the previous sections, the instability and therefore the 
occurrence of chaos or turbulence in the description of mechanical motions 
means only that these motions cannot be properly described by smooth 
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functions if the scale of observations is limited. These arguments can be 
linked to G6del's (1931) incompleteness theorem and Richardson's (1968) 
proof that the theory of elementary functions in classical analysis is 
undecidable. 

But since instability is not an invariant of motions, the following 
question can be posed: it is possible to find such a new (enlarged) class of 
functions, or a new metric of configuration space, or a new frame of 
reference in order to eliminate instability? Actually such a possibility would 
lead to different representative parameters describing the same motion in 
such a way that small uncertainties in external forces cause small changes 
of these parameters. For example, in turbulent and chaotic motions, mean 
velocities, Reynolds stresses, and power spectra represent "stable" parame- 
ters, although classical governing equations neither are explicitly expressed 
via these parameters nor uniquely define them. 

The first step toward the enlarging of the class of functions for 
modeling turbulence was made by Reynolds (1895), who decomposed the 
velocity field into the mean and pulsating components, and actually intro- 
duced a multivalued velocity field. However, this decomposition brought 
new unknowns without additional governing equations, and that created a 
"closure" problem. In 1986 Zak showed that the Reynolds equations can 
be obtained by referring the Navier-Stokes equations to a rapidly oscillat- 
ing frame of reference, while the Reynolds stresses represent the contribu- 
tion of inertia forces. From this viewpoint the "closure" has the same 
status as a "proof" of Euclid's parallel postulate, since the motion of the 
frame of reference can be chosen arbitrarily. In other words, the "closure" 
of the Reynolds equations represents a case of undecidability in classical 
mechanics. However, based upon the interpretation of the Reynolds 
stresses as inertia forces, it is reasonable to choose the motion of the frame 
of reference such that the inertia forces eliminate the original instability. In 
other words, the enlarged class of functions should be selected such that the 
solution of the original problem in that class of functions will not possess 
an exponential sensitivity to changes in initial conditions. This stabilization 
principle has been formulated and applied to chaotic and turbulent mo- 
tions by Zak (1982, 1985a, 1986a,b, 1990). As shown there, the motions 
which are chaotic (or turbulent) in the original frame of reference can be 
represented as a sum of the "mean" motion and rapid fluctuations, while 
both components are uniquely defined. It is worth emphasizing that the 
amplitude of velocity fluctuation is proportional to the degree of the 
original instability, and therefore the rapid fluctuations can be associated 
with the measure of the uncertainty in the description of the motion. It 
should be noticed that both "mean" and "fluctuation" components repre- 
senting the originally chaotic motion are stable, i.e., they are not sensitive 
to changes of initial conditions, and are fully reproducible. 
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Let us refer the original equation to the motion of  a noninertial frame 
of  reference which rapidly oscillates with respect to the original inertial 
frame of  reference. Then the absolute velocity q can be decomposed into 
the relative velocity 0~ and the transport velocity 02 = 2q2to): 

0 = 01 + 2q2co~ cos to ~ ~ (221) 

while 0J and 0 ~ are "slow" functions of time in the sense that 

1 
co >>- (222) 

T 

where ~ is the time scale upon which the changes q~ and q2~o) can be 
ignored. 

Then for the mean t] 

fo "~ 
q ~ qt since 02(0) cos tot dt ~- 1 02(0) sin tot ~ 0 if to ~ 

to 

(223) 

In other words, rapidly oscillating velocity practically does not change the 
displacements. 

Taking into account that 

to f ~n/~ 
2~ ql dt  -- ql 

o 2~/~ (72(o) sin cot dt = 0 (224) 

fo 2'~/~' l . 2 02(o) COS: tot dt - ~ q2(0) 

one can transform the system 

) ~ i =  i i i "  . ,  (225) a~ + bjmx x , i = 1 , 2 , . ,  n 

into the following form: 

i J " . ,  (226) ~ = a~$ j + bjm~,Jx m + b~jx  x , i = 1, 2 , . .  n 

where ~ and x~x j are means and double correlations of x ~ as random 
variables, respectively. 

As will be shown below, the transition from (225) to (226) is identical 
to the Reynolds transformation: i.e., applied to the Navier-Stokes equa- 
tions, it leads to the Reynolds equations, and therefore the last term in 
(226) (which is a contribution of inertial forces due to fast oscillations of 
the frame of  reference) can be identified with the Reynolds stresses. From 
a mathematical viewpoint, this transformation is interpretable as enlarging 
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the class of smooth functions to multivalued ones�9 Indeed, as follows from 
(222), for any arbitrarily small interval At, there always exists such a large 
frequency co > At/2n that within this interval the velocity q runs through all 
its values, and actually the velocity field becomes multivalued. 

Clearly equations (226) result from time averaging. In case of appli- 
cability of the ergodic hypothesis, the same equations can be obtained from 
ensemble averaging. However, formally the averaging procedure can be 
introduced axiomatically based upon the Reynolds conditions: 

a + b = ~ + 6, ka = k& k- = k (k = const) 

~a &i 
r = ti6 

Ol 0l '  

This leads to the identity 

ab = ~6 + a'b" 

w h e r e a = ~ + a ' a n d b = 6 + b ' .  
Let us consider a mechanical system with N degrees of freedom and 

the kinetic energy 

W = a~jq~q j (227) 

where qi and 0 r are the generalized coordinates and velocities, respectively, 
and introduce an N-dimensional (abstract) space with the metric 

ds2=a,kdgSdq k, k 2 = 2 W  (228) 

Then the equations of motion 

qg= q~(t) (229) 

satisfy the following differential equation: 

~ + F~O~O ~ = Q~ (230) 

where Q~ is the force vector and F}r are the Christoffel symbols: 

l~ipf  Oasp 4 ~akp Oa,~q 
F~k = "2 L ~  " Oq s ~qPA 

_ ,  {01 if ~ - ,  
a~OaB~ - 6~ = if ~ = y 

(231) 

Equation (230) can be interpreted as a parametric equation of the trajec- 
tory C of a representative point M with the contravariant coordinates q~. 
The unit tangent vector z = Vo to this trajectory is defined as 

dq ~ 1 
_ m n 

T~=v] ds (2W) I/2 q~' ~,,,Vo Vo = 1 (232) 
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while the unit normals v~, v: . . . . .  r N - I  are given by the Frenet equations: 
* 

r i  vq dq vi l - -  = ;fp+ lvp+ I (233) 
ds + kq p ds --Xp p - l +  

where ~ ,  X2 . . . .  , v N_ ~ are the curvatures of the trajectory and S is the arc 
coordinate along this trajectory. 

The principal normal vl is coplanar with the tangent Vo and the force 
vector Q. The remaining curvatures as well as the directions of the rest 
normals are defined by equation (233); see Fig. 9. 

For simplicity we will confine ourselves to the particular case when 

FIsk = const  (234) 

Substituting the decomposition (221) into equation (230), one obtains 

"#'Y ~ "# "~ =Q~ (235) /1~' + Fp~ql q I + F#~q2(o)q2(o) 

Here the terms 
�9 .# �9 

= - F#~ q 2~0) q ~t0) ( 2 3 6 )  

represent the inertia forces caused by the transport motion of the frame of 
reference. 

Applying a velocity decomposition similar to (221) 

v = ~ + 2~ cos wt, co - .  oo (237) 

to the momentum equation for a continuum in Eulerian representation 

( "  ) p ~-f+~VV = V . a  (238) 

where a is the stress tensor, one obtains 

p + ~ V~ = V �9 (a + ~) (239) 

in which ~ is the Reynolds stress tensor with the components 

6,j = -p#,Oj (240) 

In terms of the Reynolds equations, ~ and { represent the mean velocity 
and the amplitude of fast velocity fluctuations, respectively. 

The most significant advantage of the Reynolds-type equations (226), 
(235), and (239) is that they are explicitly expressed via the physically 
reproducible parameters x ~, x~x j which describe for instance, a mean veloc- 
ity profile in turbulent motions, or a power spectrum of chaotic attractors. 
However, as a price for that, these equations require a closure since the 
number of unknowns is larger than the number of equations. Actually the 
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closure problem has existed for almost 100 years, since the Reynolds 
equations were derived. In the next sections, based upon the stabilization 
principle introduced by Zak (1985a, 1986a,b, 1990), this problem will be 
discussed. 

3.3. Stabilization Principle and the Closure Problem 

3.3.1.  Genera l  R e m a r k s  

Revisiting the dynamical systems (226), (235), and (239) which de- 
scribe motions in the class of multivalued functions, one notes that these 
systems are not complete, in the sense that the number of unknowns is 
larger than the number of equations. In particular, the vector which 
expresses the bulk contribution of the "microscale" motions to the aver- 
aged motion represents excessive unknowns. Such an incompleteness cre- 
ates a closure problem. This problem first was identified in connection with 
the Reynolds equation describing turbulent motions. The problem of 
turbulence arose almost 100 years ago as a result of the discrepancy 
between theoretical fluid mechanics and experiments. However, in spite of 
considerable research activity, there is no general approach to the predic- 
tion of turbulence based upon theoretical models. Most effort has been 
directed toward finding a "physical" law which would couple the Reynolds 
stresses with the rate of strain of the average motion, and thereby would 
represent additional equations required for the closure of the Reynolds 
equations. For instance, Prandtl introduced the mixing length assumption 

eu 0u (241) r = p l  2 ay  I Oy 

for the two-dimensional version of the Reynolds equation: 

aU CqU 0U 1 gZ 
- -  - ~ = - pu ,vr  (242) Ot + U-~x + V Oy p Oy '  

Here u, v, u,, and v, are the mean and fluctuation velocity projections on 
the Cartesian coordinates x and y, respectively, z is the shear component of 
the Reynolds stress, and I is a so-called mixing length which is supposed to 
be found from experiments. 

By exploiting the closure (241), Prandtl solved several problems of the 
two-dimensional theory of turbulence: he found the mean velocity profile 
of an axisymmetric turbulent flow in a pipe, described the smoothing out of 
velocity discontinuity, etc., while all of his solutions were sufficiently close 
to experimental results. 

However, the same closure (241) failed to provide satisfactory solu- 
tions in many other cases, which means that the closure (241) cannot be 
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considered as a "physical" law. But does any "physical" law of the type 
(241) exist in principle? And is such a law necessary for the closure? Indeed, 
as shown in the previous section, the Reynolds stresses can be interpreted 
as a contribution of the inertia forces of a rapidly oscillating frame of 
reference, while this frame of reference can be chosen arbitrarily! However, 
such an interpretation leads to another question: it is possible to find such 
a frame of reference which provides tile "best" representation of the 
motion? Obviously, in this representation the motion must be stable, and 
therefore the restoration of stability of the originally unstable motion can 
be chosen as the main criterion for selection of the frame of reference, and 
therefore of the Reynolds stresses. From the mathematical viewpoint, this 
means that if the original motion is unstable in the class of smooth 
functions, this instability can be eliminated by enlarging the class of 
functions. From that viewpoint, Prandtl's closure (241) can be treated as a 
feedback which stabilizes an originally unstable laminar flow. Indeed, 
turning, for instance, to a plane Poisson flow with a parabolic velocity 
profile, one arrives at its instability if the Reynolds number is larger than 
Rcr---5772. Experiments show that a new steady turbulent profile is no 
longer parabolic: it is very fiat near the center and is very steep near the 
walls. The same profile follows from the Prandtl solution based upon the 
closure (241). But since this profile can be experimentally observed, it must 
be stable, and this stabilization is carried out by the "feedback" (241). 

3.3.2. Formulation of the Stabilization Principle 

Based upon remarks made in the previous section, we will now 
formulate the following stabilization principle. Consider a dynamical model 
which in some domain of its parameters becomes unstable in the class of 
differentiable functions, i.e., its instability leads to an unbounded growth of 
ignorable variables. As noticed earlier, this means that the corresponding 
physical phenomena cannot be adequately described in the class of differen- 
tiable functions, and the original model must be modified. The modification 
of the model should be based upon the enlarging the original class of 
functions in such a way that the instability is eliminated. This mathematical 
formulation can be complemented and specified by the following physical 
reasonings: The application of the Reynolds-averaging conditions to any 
nonlinear dynamical model leads to another nonlinear system which differs 
from the original one by additional variables--the Reynolds "stress" [see 
equations (226), (235), and (239)]. In a symbolic form, the transformation 
from the Newtonian (N) to the Reynolds (R) dynamics can be represented 
a s  

R ' x = N ' x + a R  
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If the original dynamical system 

N ' x = 0  

is unstable, but the Reynolds-averaged system 

N ' X + a R = 0  

is stable, obviously the stabilization is performed by the Reynolds stresses 
OR: driven by the mechanism of instability of the original model, they grow 
until the instability is suppressed down to a neutral stability. As will be 
shown below, the last condition may uniquely define aR as well as all the 
averaged parameters of the dynamical system. Mathematical justification of 
the neutral stability of Reynolds-averaged models will be given in Section 
4.3 [see equations (275) and (276)]. 

Experimental verification of neutral stability of free turbulent jets was 
reported by Lessen and Poillet (1976). 

In the next sections the stabilization principle will be applied for the 
prediction of the postinstability behavior of fluids (turbulent motions) and 
of finite-dimensional dynamical systems (chaos). 

3.4. Application of  the Stabilization Principle to Predictions of  
Chaotic Motions 

The strategy for the application of the stabilization principle to predict 
chaotic motions for inertial, potential, and dissipative systems will be 
presented in this section. 

3.4. I. Inertial Motions 

In order to clarify the main idea of the approach, let us turn to the 
inertial motion of a particle M of unit mass in a smooth pseudosphere S 
having a constant negative curvature (15). As shown there, the orbital 
instability and therefore the chaotic behavior of the particle M can be 
eliminated by the elastic force (40), 

F = - 0 ( 2 ~ ,  0~ 2 = const > - 2 W G ,  G < 0 (243) 

which is proportional to the normal deviation E from the geodesic trajec- 
tory which is applied to the particle M. But such a force can appear as an 
inertial force if the motion of the particle M is referred to an appropriate 
noninertial system of coordinates. 

Indeed, so far this motion has been referred to an inertial system of 
coordinates qj, q2, where ql is the coordinate along the geodesic meridians 
and qz is the coordinate along the parallels. Let us introduce now a frame 
of reference which rotates about the axis of symmetry of the pseudosphere 
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with a rapidly oscillating transport velocity: 

g --- 2Eo cc~ tot, to --, oo (244) 

so that the components of the resultant velocity along the meridians and 
parallels are, respectively, 

vl = ql, v2 = q2 + 2~0 cos tot (245) 

Since equation (245) has the same structure as equation (221), the Lagran- 
gian of the motion of  the particle M relative to the new (noninertial) frame 
of reference can be written in the form [see equation (22)] 

1 
L* - 02 - Goo {exp[ - 2( - Go),/2q, ] }(02 + Eg) (246) 

The last term in equation (246) represents the contribution of the inertia 
forces in the new frame of reference. 

So far the transport velocity go has not been specified, and therefore 
the Lagrangian (252) has the same element of arbitrariness as the govern- 
ing equations (235) describing chaotic motions. Now, based upon the 
stabilization principle, we are going to specify the transport motion in such 
a way that the original orbital instability of the inertial motion of  the 
particle M is eliminated. Turning to the condition (42), one obtains 

O2L 
O.Ez > - 2 WGo (247) 

: is the kinetic energy of the particle. This condition can be where W = ~rnvo 
satisfied if the transport velocity go is coupled with the normal deviation E 
as follows: 

1 
Go {exp[ - 2( - Go)1/2q, 1}i2 = _ WGoe 2 (248) 

As follows from equation (45), in this limit case the Lyapunov exponent of 
the relative motion in the new (noninertial) frame of reference will be zero: 

{ ~2'~1/2 02L 
a = ~ - G o - - # )  = 0 ,  a 2=  O~ 2 (249) 

and the trajectories of perturbed motions do not diverge. The normal 
deviation from the trajectory of the relative motion (in case of  zero 
perturbed velocity g0) can be written in the following form: 

c: = E 0 = const, Eo = E(t = 0) (250) 

which means that in the new frame of reference an initial error eo does not 
g row-- i t  remains constant. The relative motion along the trajectory is 
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described by the differential equation following from the Lagrangian (246), 
which takes the following form [after substituting equation (248)]: 

1 
L = q~ - G00 {exp[-2(  -Go)'/2q,]}?12 - WGo E2 (251) 

i.e., 

2(  - G 0)  ~/2 
~, {exp[ - 2( - Go)~/Zq, ]}02 = 0 (252) 

Go 
But the original (unperturbed) motion was directed along the meridians, 
i.e., q2 ~- 0. Consequently, 

/~, = 0, ql = v0 = const (253) 

i.e., the relative motion along the trajectory remains unchanged. 
Returning to the original (inertial) system, one obtains the resultant 

velocity by summing the relative and transport velocities: 

v~ = v0 (254) 

v~ = --mv~GoEo cos ogt (o9 ~ ~ )  (255) 

in which v, and v, are the velocity components parallel and normal to the 
undisturbed (geodesic) trajectory, respectively. 

The equations of the disturbed motion in the original frame of 
reference are 

a = rot (256) 

E = E o + ( l m v ~ G o e o S i n o g t )  (co ~ ~ )  (257) 

in which ~ is the coordinate along the undisturbed (geodesic) trajectory. 
It follows from equations (254)-(257) that the motion in the original 

frame of reference is stable in the sense that the current deviations of 
displacements and velocities do not exceed their initial values. However, the 
displacement-time function (257) is not differentiable, because its deriva- 
tive (255) is multivalued. Indeed, for any arbitrarily small interval At there 
always exists a large frequency o9 > h t / 2 n  such that within this interval the 
velocity (255) runs through all its values. In other words, one arrives at 
stability in the class of nondifferentiable functions. (The mathematical 
meaning of this result will be discussed below.) 

Thus, chaotic motion of a particle on a smooth pseudosphere is 
represented by the "mean" motion (256) along the undisturbed geodesic 
trajectory [with the constant velocity (244)] and the fluctuation motion 
(257) normal to this trajectory. The "amplitude" of these fluctuations is 
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vanishingly small, but the velocity "amplitude" is finite. It is worth 
emphasizing that this amplitude is proportional to the Gaussian curvature 
of the surface S, i.e., to the degree of the orbital instability. Therefore, it 
can be associated with the measure of the uncertainty in the description of 
the motion. 

It is worth mentioning that both "mean" and "fluctuation" compo- 
nents representing the originally chaotic motion are stable. That is why 
they are not sensitive to initial uncertainties and are fully reproducible. In 
other words, such a representation of the originally chaotic motion is 
deterministic. 

One should notice that the condition co ~ ~ is a mathematical ideal- 
ization. Practically, co is finite 

co >> 1IT (258) 

where T is a time scale over which changes of the parameters of the motion 
are negligible. The concepts of differentiability and multivaluedness have to 
be understood in the same sense. Indeed, the multivaluedness of the 
functions (261) and (262) means that the time interval between two 
different values of these functions is smaller than the scale of observation 
T of the examined motion, and therefore these values can be associated 
with "almost" the same argument. 

As discussed above, the concept of stability is related to a certain class 
of functions or a type of space: the same solution can be stable in one space 
and unstable in another, depending on the definition of the "distance" 
between two solutions. Indeed, if the distance between the solutions in 
(263) is defined as 

p = ~ maxlE[k)(t)-e]k)(/)] (259) 
k = O  

then the solution (257) is stable for n =0,  1, but it is unstable for 
n = 2, 3 . . . . .  since its derivatives d 2), e (3) . . . .  , are unbounded. In other 
words, the concepts of stability as well as chaos are attributes of a 
mathematical model rather than of a physical phenomenon. 

Hence, from a formal mathematical point of view, the occurrence of 
chaos in the description of mechanical motions means only that these 
motions cannot be properly described by smooth functions if the scale of 
observation is finite. 

One can notice that the application of the stabilization principle to the 
representation of chaotic motions in Lagrangian dynamics can be linked to 
a control problem. Indeed, we are introducing additional rapidly fluctuat- 
ing forces (coming from noninertial motions of the frame of reference) 
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which are coupled with the parameters of motion in such a way that the 
original instability is eliminated. 

In the particular case of an inertial motion of a particle M on a 
pseudosphere, the rate of divergence of the trajectories was constant [see 
equation (15)], which means that local and global Lyapunov exponents are 
the same. That is why by eliminating the positive local Lyapunov exponent 
we "automatically" eliminate the global one. In the general case, the 
situation is more complex: the local Lyapunov exponents depend upon the 
position of the system, and by eliminating all the local positive Lyapunov 
exponents, one overstabilizes the motion. Indeed, nonpositive global Lya- 
punov exponents can exist even if the local ones are positive in some 
domain of space where the motion can occur. As we will see later, the 
elimination of global Lyapunov experiments is a much harder problem, 
and that is why in many practical situations we confine ourselves to the 
easier problem of elimination of local exponents, i.e., with the overstabi- 
lized representations. 

3.4.2. Potent ia l  M o t i o n s  

Based upon equation (235), for potential motions, the governing 
equations can be written in the following form: 

011 
ij ~ + F~(t~(t  ~ = Oq ~ ~- a~) (260) 

OH 
- -  = - Q ~  ( 2 6 1 )  
Oq ~ 

where II is the potential energy of the dynamical system and Q~'i) are the 
inertia forces [or the "Reynolds stresses" caused by the rapidly oscillating 
transport motion of the frame of reference; see equation (236)]. 

For simplicity, we will confine ourselves to a two-dimensional dynam- 
ical system, assuming that 0t = 1, 2. 

Following the same strategy as those applied to inertial motions, let us 
couple the inertia forces with the parameters of the dynamical system in 
such a way that the original orbital instability (if it occurs) is eliminated. 
For that purpose, first we will represent these forces in the form 

OH(i~ 
a~i) ~ Oq ~ (262) 

where Hti ) is a fictitious potential energy equivalent to the kinetic energy of 
the fluctuations. Then, turning to the criteria of local orbital stability (38), 
one finds this potential energy H(i) and consequently the inertia forces a(~ 
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from the condition that original local orbital instability is eliminated: 

G + 3[ v(ll +21VI-I~') �9 n TJ 

I --/a~(H + H<;)) a(rI + H<'))|n'nJ-- = 0, i,j = 1, 2 (263) 
+ 2-ff L dq' d e F~ ~qs .j 

Here IV, G, and F~ are defined by the parameters of the dynamical system 
(260) via equations (27), (29), and (30), respectively, and n, are the 
contravariant components of the unit normal n to the trajectory of the 
basic function. 

Equation (263) contains only one unknown H~o, which can be found 
from it, and will define the inertia forces, or the "Reynolds stresses" (262). 

It should be noticed that unlike the case of the inertial motion of a 
particle on a pseudosphere, here the Gaussian curvature G as well as the 
gradients of the potential energy H are not constants, and consequently the 
local Lyapunov exponents may be different from the global ones. This 
means that the condition (263) eliminates local positive exponents, and 
therefore the solution to equations (260) and (263) represents an overstabi- 
lized motion. Obviously, elimination of only global positive Lyapunov 
exponents would lead to solutions with less uncertainties, while some of 
local exponents in certain domains of the phase space may even remain 
positive. However, the strategy for elimination of global positive exponents 
is more sophisticated, and it can be implemented only numerically. 

It is worth noting that equation (269) is simplified to 

l = O, (264 )  G 
+ z w  L aq aq J 

if the basic motion is characterized by zero potential forces 

a l l  -- = 0 (265) dq l 

This may occur, for instance, when the dynamical system is in a relative 
equilibrium with respect to a moving frame. 

Examples of the application of the stabilization principle to elastic 
systems and to ideal fluids are given by Zak (1987), and Zak (1986a), 
respectively. 

3.4.3. General Case 

When motions of a dynamical system are not potential, in many eases 
it is more convenient to represent equation (235) in the form of a system 
of first-order differential equations. For simplicity, we confine ourselves to 
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dynamical systems which can be represented in the following form: 

~i_~. i j i J " . ,  (266) a jx  + bj,~x x , i = 1 , 2 , . ,  n 

Applying the transformation (221) to the variables x i, one arrives at the 
following Reynolds-type equation [which is equivalent to equation (235)]: 

. ~ i = a ~ J + b ~ , , ~ i ~ " + b ~ , , x J x  " ,  i = 1 , 2  . . . . .  n (267) 

with the additional terms b~,,xJx " representing the Reynolds stresses. 

a. The Closure Problem. As in the previous cases, because of  addi- 
tional unknowns xJx " in (267), the closure problem arises. Analogously, 
we will seek additional coupling between the mean motion and the fluctua- 
tions: 

xJx m -~" a~"~t~c t + a ~  ftYc . . . .  (268) 

based upon the stabilization principle, the application of which will be 
clarified below. 

First, we recall that the solution to equations (266) are chaotic, and 
consequently, some of the Lyapunov exponents of equation (266) are 
positive: 

2,, + > 0, m = 1, 2 . . . . .  S (269) 

Second, we are looking for a decomposition in which the mean motion is 
periodic, rather than chaotic. Hence, the fluctuations should be coupled 
with the mean motion such that all positive Lyapunov exponents become 
zero, while the rest of the exponents are unchanged. Indeed, in this case the 
mean motion is a regular motion which is the "closest" to the original 
chaotic motion. Since the Lyapunov exponents for the system (267), (268) 
depend on the "'feedback" coefficients a~", a~',  etc., the closure can now be 
formulated as follows: 

~ . . . .  ) = 0, i = 1, 2 . . . . .  S+ 

2~ ' ' , a~." . . . .  ) = 2~ 0 . . . .  ), i = 1, 2 . . . . .  So (270) 

2i- (a~ m, a ~  . . . .  ) = 2F (0, 0 . . . .  ), i = l, 2 . . . . .  S_ 

in which 2 +, 2 ~ and 2 -  are positive, zero, and negative Lyapunov 
exponents, respectively. Obviously, those coefficients a~" which do not 
appear in (270) must be zero. 

Thus, the system (267), (268), (270) is closed. It defines the regular 
mean motion and fluctuations which represent the original chaotic motion. 
Since all the Lyapunov exponents for this system are not positive, the 
solution is stable and predictable in the sense that small changes in the 
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initial conditions cause small changes in both the mean motion and the 
fluctuations. 

In the next subsection the application of this approach to the Lorenz 
strange attractor is illustrated. 

b. Higher-Order Approximations. The Reynolds decomposition of the 
variables x i in equation (266) generates not only pair correlations x ix  ~, but 
also correlations of  higher orders, such as triple correlations x~xJx k, 
quadruple correlations x ixJxkx% etc. 

Indeed, multiplying equations (266) by x k and averaging and 
combining the results, one obtains the governing equation for the pair 
correlations x~xk: 

x ix  k = a~xJx k + a ~ x x J x  i -t- b~m(XkxJx m q- x k x J x  m "~- x k x m x  j "Jr- x J x m x  k) 

+ b~,~(xixJx m + x~xJx m + xixmx j + XJX~X ') (271) 

which contains nine additional triple correlations x~xJx k. 
Similar equations for the triple correlations will contain all the 

quadruple correlations, etc. In general, one arrives at an infinite hierarchy 
of equations which are open, since any first N equations relate (N + 1) 
correlations. 

From this viewpoint all the closures discussed above can be considered 
as first-order approximations which define only the mean components of 
the chaotic motions. In order to define both the mean motion and the 
double correlations, one should consider the Reynolds equation (267) 
together with equation (271). In this case the evolution of the double 
correlations is already prescribed by equation (271), and consequently the 
stabilizing feedback must now couple the triple correlations with the mean 
and pair correlation components: 

xixJx " = F(x  ~, x t x  m) (272) 

The system (267), (271), (272) will define periodic mean and pair correla- 
tion components. It is possible that the mean components may be different 
from those found before (in the same way in which the second-order 
approximation may be different from the first-order one). 

The higher-order approximations can be introduced using the same 
procedure. 

c. Computational Strategy. As follows from the above, the closure, 
i.e., the stabilizing feedback between the Reynolds stresses and the mean 
components of the motion, can be written in explicit form only if the 
criteria for the onset of chaos are formulated explicitly. Since such a 
situation is the exception rather than the rule, we develop below a compu- 



P o s t - i n s t a b i l i t y  M o d e l s  in Dynamics 2275 

tational strategy which allows one to find the closure regardless of the 
complexity of the original equations. 

We will demonstrate this strategy using equation (266). The same 
strategy will be suitable for the Navier-Stokes equations, since after an 
appropriate discretization technique they reduce to the form (266). 

Turning to equation (267), which follow from equation (266) as a 
result of the Reynolds decomposition, let us linearize it with respect to the 
original ("laminar") state of x~: 

�9 i - m  - j  - "  - " = (a.) + 2bjmxo )x ,  with xex  j = 0 at x' = x~ (273) 

Introducing small "laminar" disturbances in the form 

~i = ~ exp(2ot) (274) 

one arrives at a truncated analog of the Orr-Sommerfeld equations: 

2bjmxo ) x  (275)  

where the local eigenvalues of equation (267) 

~0 _ ~0  ~0  0 - "~ 1, "~2 . . . . .  2, (276) 

are the roots of the characteristic equation 

det() 03~ i i - m  - aj - 2bj,,,Xo ) = 0 (277) 

Applying the same procedure to the second-order Reynolds equation (271), 
one obtains instead of equation (272), 

1 2o6~ = (a~ + 2b~m.~'~)xJx k (278) 
2 

and therefore the local eigenvalues of equation (271) are twice as large as 
those for equation (267), i.e., instead of equation (274) 

x ~x k = ~ exp(220 t) (279) 

If the original "laminar" state $~ is unstable, i.e., there are 2 o with positive 
real parts in equation (276), 

Re 20 > 0 (280) 

then the pair correlations (279) will grow much faster than the mean 
motion disturbances (277), and one can assume that these correlations will 
be large enough to stabilize equation (267) while the mean motion will 
remain sufficiently close to its original state $~. This property makes 
possible the following computational strategy. 
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2`.= (a~ + 2b~,.s + C})Y, j 

while the eigenvalues for this equation follow from 

det(Aaj: - .̀ , - m  __ C j )  = 0 aj - 2bjmxo 

The sought coefficients Cj must be selected such that 

Let us seek a closure to equation (267) in the neighborhood of the 
original laminar state s in the form 

b~xJx " = C ~ 2  j (281) 

Substituting equation (281) into equation (267) and linearizing with respect 
to the original "laminar" state ~ ,  one obtains 

(282) 

1 0 0 
Re 2, = ~ (Re 2,. - I R e  2 .̀1) 

(283) 

(284) 

Indeed, in this case all the positive real parts of the local eigenvalues 
causing the instability of the "laminar flow" become zero, while the rest of 
these eigenvalues remain unchanged. 

In order to find (7} from condition (284), we diagonalize the matrix 

a} + 2b~,.,~'~ = {Fu} (285) 

such that 

O - I F O  = [,~i . . . . .  '~n] (286) 

then the matrix of the sought coefficients 

C~ = { Cu } (287) 

is found to be 

in which 

1 
{Co} = ~  | C2 . . . . .  C . ]O- '  (288) 

1 
C, = - ~  (Re 2, + [Re 2, I) (289) 

Substituting equation (248) into equation (282), one obtains a linearized 
governing equation for the turbulent or chaotic motion at the very begin- 
ning of the transition from the laminar motion. Selecting a small time step 
At1, one can find the next state )7~: 

s = s + :to Ah (290) 

Repeating this procedure for x{, At2, x~, At, etc., one arrives at the 
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evolution of the turbulence, or chaos. The process ends when the solution 
approaches a regular (static or periodic) attractor whose existence is 
assumed. 

A numerical implementation of this strategy can be based upon a 
direct suppression of the exponential growth of errors in initial conditions 
by means of an appropriate selection of the Reynolds stresses. As an 
example of application of such a strategy, we will illustrate the prediction 
of the probabilistic structure of the Lorenz attractor by using the stabiliza- 
tion principle. 

Applying the Reynolds transformation to the Lorenz attractor 

one obtains 

Yc = - a x  + a y  

) = - x z  + r x  - - y  (291) 

= x y  - b z  

~ = - t r Y + t r y ,  

p = r ~ - y - ; ~ - ~  

t = - b ~ + ~ p + ~  

(292) 

where s fi, and ~ are the mean values of x, y, and z, while ~'~ and ~-~ are 
double correlations representing the Reynolds "stresses." 

As extra variables, these double correlations must be found from the 
condition that they suppress the positive Lyapunov exponent to zero. In 
this ca~, both the mean and the double correlation components of the 
motion will be represented by periodic attractors, i.e., in a fully determinis- 
tic way. 

Numerical implementation of this strategy performed for a = 10, 
r = 28, and b = 8/3 leads to the following results. Figure 10 represents the 
original chaotic attractor as a solution to equation (291). In Fig. 11, this 
attractor is decomposed into two deterministic (periodic) motions: the 
mean motion (Fig. l la) and the double correlations, i.e., the Reynolds 
stresses (Figs. 11 and 1 lc). In order to find all the double correlations, one 
should exploit the system for triple correlations, which can be obtained in 
a straightforward way from equation (291). In this system all the triple 
correlations, as extra variables, must  be found from the stabilization 
principle in a similar way. By continuing this process, one can find the 
probabilistic structure of the solution to the Lorenz equations (291) to 
required accuracy. 
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Fig. 10. Plot of x vs. y for one million points sampled at 1000 points. 

It should be stressed that the solution to equations (292) plotted in 
Fig. 11 is stable (in the new class of functions which includes "multival- 
ued" fluctuations): small changes in initial conditions will lead to small 
changes in the solution. 

One should recall that although equations (292) are different from the 
original Lorenz equations (291), they describe the same physical phe- 
nomenon in a specially selected rapidly oscil'lating frame of reference. 
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Fig. 11. (a) Plot of x vs. y for one million points sampled at 1000 points. (b) ~-Yy: Double 
correlations. Plot over time (8000 points). (c) ~--~: Double correlations. Plot over time (8000 

points). 
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